
Autophotographer
CS39440 Major Project Report

Author: Oscar Pocock (osp1@aber.ac.uk)
Supervisor: Dr. Hannah Dee (osp1@aber.ac.uk)

6th May 2022
Version: 1.0 (Release)

This report was submitted as partial fulfilment of a BSc degree in Computer Science
(with integrated year in industry) (G401)

Department of Computer Science
Aberystwyth University
Aberystwyth
Ceredigion
SY23 3DB
Wales, U.K.



Declaration of originality

I confirm that:

• This submission is my own work, except where clearly indicated.

• I understand that there are severe penalties for Unacceptable Academic Practice,
which can lead to loss of marks or even the withholding of a degree.

• I have read the regulations on Unacceptable Academic Practice from the
University’s Academic Registry (AR) and the relevant sections of the current
Student Handbook of the Department of Computer Science.

• In submitting this work I understand and agree to abide by the University’s
regulations governing these issues.

Name: Oscar Pocock

Date: 6th May 2022

Consent to share this work

By including my name below, I hereby agree to this project’s report and technical work
being made available to other students and academic staff of the Aberystwyth Computer
Science Department.

Name: Oscar Pocock

Date: 6th May 2022



Acknowledgements

I would like to thank the following people for their support and contributions towards the
project:

• my major project supervisior, Dr Hannah Dee, for helping me keep calm and
collected thoughout the project and for keeping me on track.

• Aberystwyth University and Dave Price for providing me access to the unviersity’s
GPU compute cluster and providing assistance with using it.



Abstract

The goal of the Autophotographer project is to explore the idea of combination of
machine learning and convential image processing techniques to select images with a
high-level of aesthetic quality.



Contents

1 Background & Objectives 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Experiment Methods 7
2.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Software Design, Implementation and Testing 8
3.1 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Languages and Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Software Tools and Technologies . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 VS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Gitea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.4 WoodpeckerCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.5 Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Detailed design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.3 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.4 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.1 Overall Approach to Testing . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.2 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.3 CNN testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results and Conclusions 25
4.1 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



4.2.1 Filesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evaluation 33
5.1 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Project State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Time management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 Futher Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Personal conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References 36

Appendices 39

A Third-Party Code and Libraries 41

B Code Examples 42
2.1 Woodpecker pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Lint pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Test pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.3 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.4 pil loader() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ii



List of Figures

1.1 Accuracy of models trained on the AVA dataset [1] . . . . . . . . . . . . . . 2
1.2 Trophy Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 archillect.com homepage [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Common photographic techniques . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Gitea Kanban board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Project milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Woodpecker Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 A Woodpecker Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 High Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Simplified CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.8 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.9 filter paths() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.10 load config() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.11 filter brightness() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.12 AVA Dataset entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 calculate image rating() method . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 CNN Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Training loss for model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Terminal output when training . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 overcastjuly-melindwr1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 overcastjuly-melindwr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 sunnyaugust-camels hump . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 sunnyaugust-diggers end . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 sunnyaugust-drunken druid . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 sunnyaugust-hippety hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.11 sunnyaugust-melindwr1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.12 sunnyaugust-melindwr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.13 sunnyaugust-spaghetti junction . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.14 Artificial modifications and their ratings . . . . . . . . . . . . . . . . . . . . . 32

iii

https://archillect.com


List of Tables

iv



Chapter 1 Background & Objectives

Chapter 1

Background & Objectives

1.1 Background

1.1.1 Context

In a world where most people have a camera in their pocket, the number of pictures
being taken every minute has exponentially increased in the last few decades.
Smartphones cameras have reached the point where they can rival their fully-fledged
counterparts. The necessity1 of online accounts on Android and iOS, which both include
cloud storage (Google Drive / Google Photos and iCloud respectively) have made
automatic cloud backup for photographs the norm. Together, these aspects have
lowered the entry requirements and have enabled an entire generation to produce large
quantities of high-resolution photographs, which have been previously limited to
professional and hobbyist photographers.

The upsurge of data produced and people’s reliance on free cloud storage has started to
create storage concerns for providers. To combat this, certain providers have taken
measures to reduce the load by reducing or introducing service limits [3] [4]. In turn, this
had led people to reconsider how they manage their data. People have had to return to
the tedious and manual practise of filtering through their old photographs in order to free
up space for new content.

The significance of photo selection isn’t limited to storage issues. The rise of social
media and influencer-culture has culminated in entire businesses that require carefully
selected photographs. Instagram, a photo-sharing social media platform, has become
the most prominent hub for influencer-based marketing. Its popularity has spawned
many Instagram curation apps [5] [6], which helps users and businesses plan out their
posts to work towards a cohesive profile aesthetic [7]. This has also caught the attention
of data scientists who have investigated what makes certain images perform better
online than others [8].

Image aesthethic quality assessment is the process of automatically assessing the
1Both Google and Apple accounts are required to use their respective app stores and Apple doesn’t support

alternatives app stores.

1 of 44



Chapter 1 Background & Objectives

visual aesthetic rating of an image. This area of research has seen recent improvements
in the last 5 years due to the advancements in AI, computer vision, and machine
learning. On the AVA dataset2 alone we have seen accuracy rates of up to 83% when
predicting the aesthetic quality rating of images, See figure 1.1.

Figure 1.1: Accuracy of models trained on the AVA dataset [1]

1.1.2 Related Work

Trophy Camera In 2017, fine artist Dries Depoorter and professional photographer
Max Pinckers developed a camera “that can only make award winning pictures” [9]. This
camera was built using a Raspberry Pi and was programmed to only save
award-winning photographs, which were subsequently uploaded to a website:
trophy.camera [10]. The AI was trained using previous winning photographs from the
WPPY (World Press Photo’s of the Year) contest (Warning: Website includes images
some might find disturbing, including death, extreme violence, and suffering) [11]. By
comparing the photos featured on trophy.camera and the previous winning photographs
of WPPY, you can see the effectiveness of the project is questionable. This isn’t
surprising, given the stark difference in subject matter and the photography skills of the
general public versus the award-winning photographers. The majority of the
photographs submitted to the WPPY are taken by professional photographers using
high-end cameras (See figure 1.2c) and mostly depict global conflict. In contrast, the
Trophy Camera is limited to the walls of a gallery, using a low-end camera, and the
photos are taken by the general public (See figure 1.2b). This is an example where the
data used for training doesn’t match the desired use-case of the project, resulting in

2The AVA (Aesthetic Visual Assessment) dataset is the most common dataset used for aesthetic quality
assessment.

2 of 44

https://trophy.camera
https://trophy.camera


Chapter 1 Background & Objectives

images that fail to achieve an “award winning” appearance.

(a) Trophy Camera [9]
(b) Photo taken with Trophy
Camera [10]

(c) Example of photo used to
train Trophy Camera [12]

Figure 1.2: Trophy Camera

Archillect A combination of the words “archive” and “intellect”, Archillect [2] is an AI
that automatically curates visually stimulating content found online. To do this, Archillect
uses an algorithm and a list of of keywords that searches for posts and pages, then
crawls pages linked from original results to find new images and gain relevant contextual
knowledge and learn new keywords. Ultimiately, Archillect learns what images create
visual stimulation for people on social media, reposting them and updating the algorithm
according ”likes” and other user engagement metrics.

Figure 1.3: archillect.com homepage [2]

1.1.3 Motivation

Historically, the most common and successful approaches to grading the aesthetic
quality of images has been through machine learning. This involves creating a neural
network, typtically a CNN (Convulution Neural Network), and training it with professional
photography based datasets. The most common of these datasets being AVA (Aesthetic
Visual Analysis), which is comprised of a set of professionally taken photographs and an
aesthetic rating provided by numerous professional photographers that acts as a ground
truth for aesthetic quality.

3 of 44

https://archillect.com


Chapter 1 Background & Objectives

Many people believe aesthetics are subjective. We can observe this when the aesthetics
of certain art pieces can often be contested and contraversial. Considering the
percieved subjective nature of aesthetics, there seems to be certain ideas that are
almost universally accepted as aesthetic. In art we often hear about composition rules
like the golden ratio, rule of thirds, and symmetry which are meant to invoke a positive
sentiment. See figure 1.4. For others, aesthetics can’t be reduced down to a set of
predifined rules and many people welcome images that break the natural conventions of
professional photography.

(a) Golden Ratio [13] (b) Symmetry [14]

(c) Rule of Thirds [15] (d) Shallow Depth of Field [16]

Figure 1.4: Common photographic techniques

1.1.3.1 Applications

Automatic image selection is a useful concept that can be used in many applications.
The main motivation for the project was to use the system as a acessibility tool, allowing
those who are less technically or physically abled to take good aesthetic-quality images.
They use a head-mounted camera and record a journey our outing and the tool could
automatically reduce the footage into an album of good-looking photos for them to enjoy.

Professional photographers could use automatic image selection to remove technically
poor images from a large collection of images from a photoshoot. This process would
help alleviate much of the manual filter photographers have to do post photoshoot.

4 of 44



Chapter 1 Background & Objectives

1.1.3.2 Personal motivations

An important motivation for this project and it’s direction is my interest in machine
learning. The CS36220 Machine Learning [17] module acted as a good introduction to
the topic, but I wanted to get some personal experience with deep learning as it’s an
area of computer science I find really interesting.

1.2 Analysis

1.2.1 Problem Description

This project aims to explore the question of ”Can we use a computer to make accurate
aesthetic judgements on images?”. In order to create a program to detect and select
aesthetics images from a video file, the video file needs to be broken down into
individual frames, then each frame needs to be analysed against certain aesthetic
features and rules like (rule of thirds, contrast, brightness, focus). Each of these filters
will need to be implemented in such a way that allows any order and combination of
filters to be used. Lastly, a machine learning approach will be taken to rate and rank the
remaining images. For this we can use a CNN (Convolution Neural Network) which will
need to be trained on professional photographs as they can be considered a good base
for what is considered a good “aesthetic” quality.

1.2.2 Approach

The specific approach taken for this project is to use a combination of machine learning
and conventional image processing techniques. This is a good balance between
performance and accuracy as the conventional image processing techniques can filter
out the poor technical images (blurry, low contrast, extreme exposure etc.) therefore
limiting the amount of processing required by the machine learning model at the end of
the pipeline.

1.2.3 Alternative Approaches

This project could also be approached from an exclusively coventional computer vision
approach, which would require writing specific code to recognise aesthetic photographic
techniques (like rule of thirds and vanishing point: see figure 1.4) and using those to help
determine the aesthethic quality of an image.

A machine learning only approach could also be taken but for the context of this project
this would be computationally wasteful. Due to the nature of a continous video
recording, many frames will be blurry or under exposed due to lighting changes. These
images are technically poor in quality and processing hundres of them using a CNN

5 of 44



Chapter 1 Background & Objectives

would be wasteful when they could be more easily discarded using conventional image
processing techniques.

1.2.4 Aim

The aim of the project is to develop a piece of software that will take a video or a set of
images as an input, process them through filtering, and output a subset of ”aesthetic”
images or frames. The set will be processed through filters which will be implementated
as part of the project.

1.2.5 Objectives

• Context specific research into machine learning

– Research suitable machine learning frameworks
– Research how to start building a CNN

• Setup tools for development

– Host a Gitea instance to hsot the project’s repository
– Create repository for project
– Mirror repository to GitLab.com for availability
– Setup WoodpeckerCI for CI/CD workloads and connect it to the project

repository
– Setup pipelines for automated testing in WoodpeckerCI

• Research convential image processing techniques

– Quantify brightness
– Quantify contrast
– Quantify focus
– Depth of field detection
– Vanishing point detection

1.2.5.1 Research Questions

• How effective is the machine learning approach compared to a more conventional
one?

• Which order of filtering is most effective?

• Can a CNN be used to make aesthetic judgements of an image?

6 of 44



Chapter 2 Experiment Methods

Chapter 2

Experiment Methods

2.1 Hypothesis

Hypothesis: Can a CNN and an a set of image processors make accurate aesthetic
judgments on images.

7 of 44



Chapter 3 Software Design, Implementation and Testing

Chapter 3

Software Design, Implementation
and Testing

3.1 Development Process

Originally, the plan was for the project to follow a scrum-like methodology, but due to the
research-based nature of the project and working with new technologies – it was difficult
to estimate the time and effort required for certain tasks.Naturally, the weekly meetings
with the project supervisor acted as a weekly review of the work done and what work
was to be done the following week. When the project repositories were set up, a Kanban
board was set up alongside it. This was used to keep track of the progress of tasks and
features. Milestones were created to group small tasks together that lead to a bigger
task being completed.

3.2 Languages and Frameworks

3.2.1 Python

Python [18] was selected as the programming langauge for the project due to it’s
popularity in data science and it’s dynamic and weakly typed nature. This enables an
easier transisition from project ideas to working code. It was also chosen for it’s use in
machine learning as it seems to be the main language in most of the top machine
learning libraries.

3.2.2 PyTorch

The most common frameworks for deep learning are TensorFlow [19], PyTorch [20], and
Keras [21].

TensorFlow, arguably the most known of the three, is developed by Google. It’s mostly

8 of 44



Chapter 3 Software Design, Implementation and Testing

used in Python but can also be used with C++, Java, and Javascript. It provides a
powerful framework for ML (Machine Learning) and AI (Artificial Intelligence) tasks.
Although, TensorFlows primarily focuses on creating deep neural network and training.

Keras is a high-level deep-learning API used to interface with TensorFlow. It’s main aim
is to simplify the process of developing deep neural networks for use in quick
experimentation.

The last of the three, PyTorch, is primarily developed by Facebook and acts as the main
competitor to TensorFlow. It’s gained popularity within the research community due to
it’s ease of use and gradual learning curve compared to TensorFlow.

The decision was made to use PyTorch as machine learning isn’t the primary aspect of
this project. The reduced complexity should speed up development time.

3.3 Software Tools and Technologies

3.3.1 VS Code

The IDE/Editor used for this project is VS Code1. This was chosen as it was a familiar
and popular IDE/Editor with good plugin support and features.

3.3.2 Docker

Docker containers were used to host tools like Gitea and Woodpecker on a private
server to aid with development. They were also used to create reproducible
development and testing environments2.

3.3.3 Gitea

For version control this project uses git and Gitea as an open-source and self-hostable
git host. Gitea also includes workflow features like bug tracking via “issues”, kanban
boards (see figure 3.2), and plugins to work with other tools (see section 3.3.4). The
source code for this project is hosted on a personal instance of Gitea hosted at
git.oscar.blue. The project’s repository is also mirrored3 to gitlab.com for availability.

1More specifically: VS Codium. A libre-binary version of Microsoft’s VS Code. It’s built from VS Code’s
source albeit with tracking and telemetry disabled and then distributed at binaries. It’s essential VS Code, so
it’ll continued to be referenced as such.

2a Dockerfile and Docker-compose file are supplied with the source code for this project.
3Sync interval is every 8 hours.

9 of 44

https://git.oscar.blue
https://gitlab.com


Chapter 3 Software Design, Implementation and Testing

(a) Original Gitea version (b) Mirror Gitlab version

Figure 3.2: Gitea Kanban board

Figure 3.3: Project milestones

10 of 44



Chapter 3 Software Design, Implementation and Testing

3.3.4 WoodpeckerCI

WoodpeckerCI, an open-source community fork of DroneCI, is a CI/CD (Continuous
Integration/ Continous Deployment) platform used to create automated piplines for
tesing and building. A personal instance was hosted at woodpecker.oscar.blue and
linked to the project’s git repository for CI/CD.

3.3.4.1 Woodpecker pipelines

Figure 3.4: Woodpecker Pipelines

Figure 3.5: A Woodpecker Pipeline

11 of 44

https://woodpecker.oscar.blue


Chapter 3 Software Design, Implementation and Testing

Two pipelines were created, one to establish automated testing and the other for source
code linting.

3.3.5 Terraform

When training the CNN, Terraform was used to create GPU-enabled cloud compute
resources on the fly so that it could easily be built up and torn down during training.
Although this code was barely used in the end due to moving away from cloud solutions
(See section 3.5.4.3 for details).

3.4 Design

3.4.1 Overall Architecture

Figure 3.6: High Level Architecture

3.4.2 Detailed design

12 of 44



Chapter 3 Software Design, Implementation and Testing

3.4.2.1 CNN model architecture

Figure 3.7: Simplified CNN Architecture

13 of 44



Chapter 3 Software Design, Implementation and Testing

Figure 3.8: CNN Architecture

14 of 44



Chapter 3 Software Design, Implementation and Testing

3.4.2.2 Functions

Input: list of paths

List files inside the directory

Overwrite the original list with those new files

yes
Does the list only have one item which is also a directory? no

Ignore video files?yes no

Add each file that ends in an image file extension to a new list Add each file that ends in an image or a video file extension to a new list

Output: list of filtered paths

Figure 3.9: filter paths() function

Input: path to a config file

Does the path exist?yes no

Does the path end with .yml or .yaml?yes no

Attempt to read the file

Output: dictionary of file contents

Error: File is not a YAML file

Error: File doesn't exist

Figure 3.10: load config() function

15 of 44



Chapter 3 Software Design, Implementation and Testing

Input: paths

Load image

Resize image to a
lower resolution

Covert image colour
space to L*a*b*

Extract only the L
(luminance) channel

Normalize the
luminance channel

Get the average
value for the

luminance channel

Yes

No

Is the average  
value greater than  

the threshold

Add path to list of
filtered paths

Yes

No

Are there still more
paths to be
processed?

Output: list of
 filtered paths

Figure 3.11: filter brightness() function

3.4.3 Datasets

AVA The most common dataset used for analysing image aesthetics is the AVA
(Aesthetics Quality Assessment) [22]. This dataset is comprised of over 250,000
photographs taken from DPChallenge [23] including a varied selection of metadata
including: a large number of aesthetic ratings from users for each photograph, over 10
photography style labels (macro, rule of thirds, shallow depth of field etc. ), and over 60
semantic lables (landscape, animal, wedding etc.).

In the paper released alongside the dataset [22], it references that the dataset is
available at www.lucamarchesotti.com/ava. Although, this link has been down for the
past 5 years. To work around this, there are many scripts online which will scrape
DPChallenge to build the dataset for you. Others have decided to upload the entire
dataset online for quicker access and from preventing users from being rate-limited by
DPChallenge.com while scraping. For this project the dataset was downloaded from

16 of 44



Chapter 3 Software Design, Implementation and Testing

MEGA (mega.nz/folder/9b520Lzb#2gIa1fgAzr677dcHKxjmtQ) which was provided by a
GitHub repository [24] which also included AVA download-helper scripts.

AADB Another common dataset is AADB (Aesthetics and Attributes Database) [25].
Unlike AVA, AADB uses photos from Flickr [26] an image sharing site which is less
targeted towards professional photographers and therefore hosts a more varied range of
aesthetic quality compared to DPChallenge. Although AADB uses only 10,000 images
compared to AVA’s 250,000. In AADB, rater identity is anonymously recorded a tracked
across different photos which they use in their sampling strategy to contexualize the
subjectivity of aesthetic tastes.

As the project is aimed to help the general public to select high aesthetic quality frames
from videos, it may make more sense to use the AADB dataset as it contains more
amateur photography compared to AVA. Although, AVA has the advantage of being a
larger dataset. Both datasets could be helpful in working with the project.

3.5 Implementation

3.5.1 Configuration

A YAML configuration file4 was created to enabled quick changes to the filters and
pipeline options. YAML was selected as it’s a human readable and allows comments
unlike JSON. The main options were:

• filters - declare which filters you want to use, and in which order (default)

• CNNrank - declare whether you want to rank the remaining images using a CNN
(default: False)

• ignore video - declare wether you want to ingore video files when loading in paths
(default: False)

• brightness options - declare options for brightness filter

• filesize options - declare options for filesize filter

• contrast options - declare options for contrast filter

• focus options - declare options for focus filter

3.5.2 Pipeline

The overall pipeline takes in a set of paths and will applying image processing in layers
to filter the lower aesthetic quality images and thus reducing the set of paths (see figure
3.6).

4See example configuration file in Apendix B section 2.1.3.

17 of 44

https://mega.nz/folder/9b520Lzb#2gIa1fgAzr677dcHKxjmtQ


Chapter 3 Software Design, Implementation and Testing

• Loads in the video or image

• Runs through each filter and ouputs a subset of the list of paths

3.5.3 Filters

In general, each filter takes in a list of paths and some options (for thresholds etc). The
filter will attempt to reduce down the list of paths based on it’s filtering technique and
threshold. The reasoning behind each filter taking a list of paths as an input was to
enable future functionality which would process the frame in context to the other frames.
Based on the filter type, some filters will only have a lower bound (e.g discarding
filesizes below a certain threshold) while others will include both a lower and higher
bound (e.g. discarding images that are too dark or too bright in the brightness filter).

3.5.3.1 Filesize

When comparing file sizes it’s safe to assume that larger file sizes contain more
information, more information might allude to a more interesting and thus more likely to
hold a higher aesthetic quality. When filtering by filesize, only the lower bound is
considered. In other words: only filter out images below a certain filesize. To do this, set
a threshold and compute the filesize of a given file. If the filesize is lower than the
threshold then the image is discarded.

3.5.3.2 Brightness

To quantify an image’s brightness the L*a*b* colour space is used. This colour space is
meant to reflect human perception of light and colour. In the case where brightness is
only concerned, the L (Luminance) channel can be used as a comparable metric to
human perception of brightness. To use this effectively, the image is first converted to
L*a*b, then the pixel values for the L channel are normalised by dividing each pixels
value by the maximum value, then the average of pixel brightness is calculated. This will
give us our average luminance of the image. Here brightness should have a lower and
upper bound. As some images can be over exposed or under exposed. Both extremes
result in poor image quality. Therefore, we can set a percentile band removing the
images that land in the extreme upper and lower bounds.

3.5.3.3 Contrast

To detect contrast an existing function in the skimage [27] library called ”is low contrast”
method. This method will take an image and a threshold and return true or false
depending on if the contrast is above or below the threshold value. Again, like
brightness, contrast has lower and upper bounds that need to be removed as an image
can have too much contrast or too little. When researching how to calculate an image’s
contrast levels, the following post was found and followed as a guide [28].

18 of 44



Chapter 3 Software Design, Implementation and Testing

3.5.3.4 Focus

There are a couple of popular methods for detecting if an image is blurry or not. For
detecting blurry images there are two common methods. Laplacian method and fast
farrier transform. The laplacian variance method. This method can actually be
implemented fairly easily using cv2. You can compute the variance of the laplacian of an
image then you can just take the standard deviation squared. A low variance indicates
that there aren’t many edges in the image, something we can see in blurry pictures.
While a high variance means there are a lot of edges and therefore the image is less
likely to be blurry. Although this method alone won’t allow us to predict if an image with a
low depth of field, with a subject is in focus or not as it will just return as ”this image is
somewhat blurred” which doesn’t tell us much. This method works well when you can
compute an good level of focus before hand and then you can remove the outliers ”(like
for a consistent video feed). The following guides were used as a resource for this
methods [29] [30].

3.5.4 CNN

3.5.4.1 CNN architecture

Originally, the plan was to build a CNN from scratch using PyTorch. This required a lot of
research as the CS36220 Machine Learning [17] module didn’t cover the details of
CNNs nor their practical implementation. To gain a better theory understanding,
Stanford University’s online lecture material covering deep learning software [31] and
CNN architecture [32] was used. For practical knowledge several sources PyTorch’s
official tutorial for training [33] and pyimagesearch’s guide on training a CNN [34] were
used a foundation for understanding the how to use PyTorch – which is also where the
idea of using a separate configuration file for storing variables for batch sizes and
validaton splits was inspired from. While attempting to build a CNN, existing CNN
approaches [35] [25] were researched in detail to build foundational knowledge of how to
tackle the shared problem of judging image aesthetic quality. It soon became clear that
most sucessful models were using transfer learning instead of building a CNN from
scratch. Transfer learning is the process of using the knowledge learned by an existing
model and transferring it to a new model which is attempting to solve a similar issue.

After understanding its benefits, a transfer learning approach to creating a CNN was
adopted. This approach was more suited for the project due to the time contraints and
the approach’s increased probability to create a good working model.

ResNet50 [36] was chosen as the base model as ResNet based networks have
historically performed really well in transfer learning due to their large amounts of hidden
layers. The large amount of hidden layers led to it winning all classification and detection
competitions in both ILSVRC (ImageNet Large Scale Visual Recognition Challenge) and
Microsoft’s COCO (Common Objects in Context) in 2015. ResNet50 is a ResNet model
with 50 hidden layers (See figure 3.8) and 1000 different classes. It is trained on the
ImageNet [37] dataset, a large dataset comprised of over 14 million annotated images.
This dataset is used in ILSVRC as a benchmark for models in classification and object

19 of 44



Chapter 3 Software Design, Implementation and Testing

detection.

Although this project’s problem could be implemented as a classficiation problem in the
sense of ”Is this image of high aesthetic quality?” with two classes ”Yes” and ”No”, we
would achieve better insight through a regression-based model asking ”How high is the
aesthetic quality of this image?” which would return a rating between 0 and 10. To learn
specifically how to implement a regression-based model, a couple of guides [38] [39]
surrouding the building of regression-based models using the real estate dataset [40].
Transfering the knowledge from the ResNet50 model and altering the model to fit our
problem requires a few steps. The pyimagesearch’s guide for transfer learning in
PyTorch for classification problems [41] was also used as a guide and much of the
structure of the model.py code is inspired by this post.

1. Load ResNet50 model

2. Freeze all layers except the last

3. Remove final layer

4. Add a fully connected layer with one output and a relu function

5. Train using new problem data (AVA dataset)

The original plan was to train the two models, once with the AVA dataset and once with
the AADB dataset and compare their accuracy. Due to time contrainst and the other
aspects of the project being neglected, this had to be dropped and only the AVA dataset
was used in the end.

3.5.4.2 Working with the dataset

The first step to working with the AVA dataset is to load in the data in the format we need
it. As the images in AVA were rated from a scale of 1-10 we also want our model to
ouput a rating between 1-10. The way AVA exposes these ratings is by showing the
count of each rating (see figure 3.12). In other words, for each image it shows you how
many users rated the image (1/10, 2/10 etc.). For this project’s use-case, these counts
of ratings aren’t very useful. They need to be processed into a single value. To do this,
each rating is given a multipler (a rating of 1 is multiplied by 1, rating of 2 is multiplied by
2 etc.). The sum of all of these new multipied ratings is then dividing by the total number
of casted votes. This should give us a single value rating between 1-10 (see figure 3.13).

40 953780 0 2 5 27 54 24 3 3 1 1 0 0 1396

Index Image ID counts of aesthetic ratings per rating level from scale 1-10
Semantic
tags ID 

Challenge
ID 

Figure 3.12: AVA Dataset entry

20 of 44



Chapter 3 Software Design, Implementation and Testing

Input: AVA image ID

Read and store the AVA.txt as a CSV

Retrieve the row for
the given image ID

Set the start of the
search as column 2

Yes

No
Is the search past

column 11?

Divide summed score
by number of votes

Round the score to 6
decimal places

Output: adjusted
score

Get the number of
ratings for the current

search column

Multiply the number in
the column by the

column number - 2 (as
we're starting on the

second column)

Store
Add the calculated

number to the summed
score variable

Store

Add the number of
votes in the column to

the a counter of number
of total votes

summedScore

numOfVotes

Figure 3.13: calculate image rating() method

3.5.4.3 Training model

In order to train the model, PyTorch’s in-built training functionality was used. Intially, the
model was trained for 20 epochs on the CPU to validate that there weren’t any runtime
errors. In order to run the training for 20 epochs on a CPU it took just over 4 hours,
meaning 2000 epochs would take over 400 hours or roughly 16 and a half days to train
on a CPU. In order to speed up processing GPU-compute power was required. PyTorch
has long supported using CUDA on Nvidia GPUs for accelerated workloads but has only
recently implemented support for AMD’s equivalent: ROCm5 [42] [43]. ROCm also has a
lack of installation targets - mostly packaging the stack for enterprise Linux distributions
like RHEL (Red Hat Enterprise Linux), SLES (SUSE Linux Enterprise Server), and
Ubuntu6. Fortunately, ROCm is open source, unlike Nvidia’s counterpart – CUDA. This

5As of writing ROCm support for PyTorch is still in beta.
6Ubuntu requires the HWE (Hardware Enablement) kernel.

21 of 44



Chapter 3 Software Design, Implementation and Testing

meant that theoretically ROCm could be compiled from source and installed manually.
When this was attempted, the machine compiling the package ran out of memory and
halted. ROCm was abandonned and the choice to move forward with CUDA was made.
As the computer used for the project didn’t have an Nvidia GPU, the option of using
cloud computing to was explored.

The next step involved researching a number of cloud providers which offered GPU
compute and comparing prices. AWS (Amazon Web Services), the biggest global cloud
provider to date, was unrealistically expensive so GCP (Google Cloud Platform), Azure,
and Linode were considered instead. Although each of these platforms advertise GPU
computer services, each platform has a GPU quota which is automatically locked to
zero. This require contacting support to have the restriction lifted or in the case of Linode
there’s an additionally requirement to have $100 or more in transactions before asking to
remove the lock. After contacting GCP support, the quota for GPUs was increased to
one which enabled the CNN model to be trained using Google’s cloud GPU compute.

As part of the project and the drive for creating an optimal development environment,
IaC (Infrastructure as Code) was used to rapidly automate deployments of cloud
resources, minimising cost and saving time when training. Terraform, a cloud agnostic
IaC tool, was used to define the architecture for the cloud resources required to run a
training workload. Unexpectedly, working with GCP was harder than expected due to it’s
novel methods. By default, GCP creates a user account for a newly created server and
disables password authentication. Instead, GCP creates an SSH key pair and stores the
private key within the GCP platform which isn’t viewable by the user. To log in, users
have to use the gcloud CLI application which connects to their GCP account which then
in turn fetches the private SSH key and automatically logs the user in. Due to this
convoluted process, it was difficult to automate the post-installation commands required
to set up the training environment. Further issues arised when the decision was made to
use Google’s official machine learning images which were advertised as “the easiest
way to get started because these images already have the NVIDIA drivers and CUDA
libraries pre-installed” [44]. In reality, CUDA was not preinstalled. Instead, an installation
script ran on boot which would install the aforementioned drivers and libraries.
Unfortunately, Google’s script clashed with the project’s post-installation script as both of
them used apt. This would result in the project’s script locking apt when installing it’s
dependencies, preventing Google’s script from using apt to install the drivers. Google’s
script would then terminate but wrongfully output that the drivers had been installed.

Around the same time, the university offered access to use their GPU compute cluster
on the condition that the project only used one GPU from their old server. The
university’s GPU compute cluster managed jobs using slurm [45] which enqueues an
new job to the cluster. The resources on the old server limited it to job very few
concurrent jobs, creating a scenario where existing jobs would have to finish before new
ones could start. This was ultimately the best option considering it was being provided at
no extra cost and the setup wasmuch more straight-forward compared to GCP.

The university’s GPU cluster uses Anaconda [46] virtual environments to run
experiements. Once a new environment was created and the depencies for the model
training code were installed, a model was able to be trained. This code trained the
model for 2000 epochs and saved a plot the train and validation loss.

22 of 44



Chapter 3 Software Design, Implementation and Testing

To speed up processing time, a batch of the dataset was pre-processed with translations
and saved to tensors. This was originally done to speed up runtime troubleshooting in
the training code by cutting out the time it took to process the images before each run.

3.6 Testing

3.6.1 Overall Approach to Testing

Due to the explorative and experimental nature of this project, a lot of code was used
temporarily or was CNN based which is difficult to write tests for. Therefore testing was
left till the end when the project when there was more structure and finalised pieces.

3.6.2 Automated Testing

CI/CD pipelines were set up to facilitate automated testing using pytest and pytest’s conv
plugin which shows a breakdown of test coverage on the codebase.

3.6.2.1 Unit Tests

Only 4 unit tests were implemented. Three of the tests check the functionality to
calculate a single value for the AVA ratings. As a lot of the functions in the this project
rely on complex datastructures like panda DataFrames and images testing was quite
difficult and the use of mocks was necessary.

As the ”calculate image rating()” function reads a CSV file and stores it as a dataframe,
a mock dataframe had to be created for each test.

test calculate image rating with no ratings This test is checking that if all ratings
for an image are 0 then the resulting single score would also be zero. This test intially
failed and made aware the fact that by following the logic of the algorithm it would try to
divide 0 by 0. This caused a runtime error and therefore a specific check had to be put
into the function which checked if the summer score equated to 0. If it did, it would avoid
diving by the total number of votes and instead just return 0.

test calculate image rating multiple ratings This test will check that the algorithm
accurately calculates a single rating value.

test calculate image rating incorrect number of columns This test checks that the
right exception is called when it attempts to calculate the image rating on an entry which
has more than 15 columns which is the number of columns an entry had in the AVA
dataset.

23 of 44



Chapter 3 Software Design, Implementation and Testing

test load config nonexistent file This test checks if the right exception is thrown
when an non-existent file is attempted to load using the ”load config()” function in the
autophotographer main.py script. This test implemented very well as it relies on the
filesystem of the user. If the user has a file named ”blahblahblah” on their system in the
right location then the test will falsely fail.

3.6.3 CNN testing

When testing the CNN performance, a random small batch of 4 images is selected and
then their rating is predicted and plotted. Although as the images are fetched from the
validation loader, they are pre-processed which has led to processed images being
shown in the reduced size they are scaled down to for training.

Figure 3.14: CNN Testing

As observed in figure 3.14, the CNN isn’t very accurate as predicting the aesthetical
quality of these images and the variance in prediction/ground truth is quite large between
images.

24 of 44



Chapter 4 Results and Conclusions

Chapter 4

Results and Conclusions

4.1 CNN

4.1.1 Training

The first training attempt for the CNN was only run for 20 epochs on a CPU to check for
runtime errors. During these 20 epochs the loss gradients didn’t plateau meaning the
model could benefit from longer training. The next attempt was run for 2000 epochs on a
GPU. Figure 4.1b shows that the training loss started to slow down around 30 epochs
and plateaued at around 60. While the validation loss also plateaued around 60 epochs,
the variance in loss was much greater. This most likely means the model has converged
on an concept of aesthetic quality that doesn’t match the concept it was set out to learn.
As shown in figure 4.2 the resulting training loss was 0.576810 and the validation loss
was 0.604089, this means that on average the model is roughly 60% off the ground truth
with quite a high variance.

(a) 20 epochs (b) 2000 Epochs

Figure 4.1: Training loss for model

25 of 44



Chapter 4 Results and Conclusions

Figure 4.2: Terminal output when training

4.1.2 Testing

4.1.2.1 Experiment 1

Due to the lack of tuning in the pipeline: experiment 1 is non-functional. The aim of
experiment 1 is to pass a batch of of AVA images and their ratings and compared the
average rating of the batch before and after filter. If the average rating has increased it
tells us that the pipeline is doing some for of effective filtering. It’s not a well thought out
experiment so the results are difficult to quantify.

26 of 44



Chapter 4 Results and Conclusions

Figure 4.3: Experiment 1

4.1.2.2 Experiment 2

Due to the lack of tuning in the pipeline: experiment 2 is non-functional. The aim of this
experiment was to see which filter could reduce the set the largest amount. The same
set of images is passed through each filter once and the remaining images are plotted.

27 of 44



Chapter 4 Results and Conclusions

Figure 4.4: Experiment 2

4.1.2.3 Experiment 3

During the third experiment, there was an attempt to visualize how the model performed
on real data. The model was used to predict the aesthetic quality rating of the frames in
the videos provided by Dr Hannah Dee. The ratings were then ranked and the top 5
ranking and lowest 5 ranking entries were plotted. This experiment isn’t an accurate
metric of how well the model performs, but it useful to see how it performed on data that
wasn’t from the AVA dataset. Common accross all of the following examples is that the
top 5 ranking images lay in the low-6s while the bottom 5 images lay in the high-5s.
There doesn’t seem to be as much variance as expected from the data, which includes a
few shots in very poor lighting conditions and very blurry frames. This might possibly be
an architecture issue with the training of the CNN resulting in most images being
predicted in the range of 5-6.

28 of 44



Chapter 4 Results and Conclusions

Figure 4.5: overcastjuly-melindwr1

Figure 4.6: overcastjuly-melindwr2

Figure 4.7: sunnyaugust-camels hump

29 of 44



Chapter 4 Results and Conclusions

Figure 4.8: sunnyaugust-diggers end

Figure 4.9: sunnyaugust-drunken druid

Figure 4.10: sunnyaugust-hippety hop

30 of 44



Chapter 4 Results and Conclusions

Figure 4.11: sunnyaugust-melindwr1

Figure 4.12: sunnyaugust-melindwr2

Figure 4.13: sunnyaugust-spaghetti junction

31 of 44



Chapter 4 Results and Conclusions

4.1.2.4 Experiment 4

Figure 4.14: Artificial modifications and their ratings

In the 4th experiment. Aritificial data was used to test the model’s performance. A base
image [47] was used and then artificially edited with GIMP [48] to lower it’s aesthetic
quality. The first image image in figure 4.14 is the original photo, the second has had it’s
contrast lowered, the third has had it’s exposure increased, and the fourth has had a
gaussian blur applied to it. From the results it’s clear to see the model has no
understanding of the decline in quality in the edited picture. In this example all of the
edited pictures actually score higher than the original picture.

4.2 Filters

4.2.1 Filesize

4.2.2 Contrast

4.2.3 Brightness

4.2.4 Focus

32 of 44



Chapter 5 Evaluation

Chapter 5

Evaluation

5.1 Design Decisions

5.2 Development Process

Due to the lack of a strict development process, tasks weren’t evaluated and took more
effort than expected. This lead to the project pulling back its scope over the course of
development. A stricter development process would have enabled the project to grow at
a steadier pace and evaluating the work and time taken for each work item at the end of
each week would have helped with the prioritising of tasks and adapting of scope.

5.3 Approach

The machine learning approach was chosen due to the attractiveness of the possible
output rather than it’s context as part of a major project. Going down the machine
learning path required a lot learning a getting a good grasp of complex topics which took
up a large portion of the project. In the end, more time was spent learning about CNNs
than expected which lead to less time developing.

5.4 Project State

The project is considered as unfinished as there was much more planned to implement.
The filters are basic in concept and in implementation and require using a manually
determining a ”good” threshold and applying it. If the work were to be continued, the
pipeline would process each frame of a video and use the distribution of values from a
given filter to determine lower and upper bound outliers which would thn be removed
automatically.

33 of 44



Chapter 5 Evaluation

5.4.1 Implementation

The overall implementation of the project is incomplete, most of the code was
hard-coded and static which made it difficult to work with. With more time the project
would be restructured and refactorer to make the code easier to work with and develop
further.

5.4.2 Testing

One of the biggest issues with the project is a lack of testing. Due to maining of the bad
decisions with the approach of the project and the lack of a strict development process,
testing was left until the very end.

5.4.3 Experiments

Many of the experiments only give artificial insight into the level of success of the project
rather than providing meaningful metrics.

5.5 Report

The overall quality of the report is quite poor and many of its sections are limited in detail
and scope. One of the difficulties that was presented in writing this report was a lack of
experience in research-based approaches and report writing. This made it difficult to
give the project a research-based context. Much of the detailed design is missing from
the report and there’s a lack of detail when talking about specific implementation issues.

5.6 Time management

The time management for the project was very poor and it was a struggle to finish
everything that was intially planned. This mostly due to a lack detailed planning and a
strict development process. This led to an ambiguity of how much work was required to
finish the project which became clearer towards the deadline. Near the end of the
project, it was difficult to balance project work and other areas of life and personal issues.

5.7 Futher Work

This technical work achieved in this project is a good foundation for further work.
Alterations can be made to the CNN to attempt to improve it’s accuracy with later

34 of 44



Chapter 5 Evaluation

iterations. One way that this can be done is to explore fine-tuning the CNN, potentially
unfreezing all the layers and training the model again.

If composition filters were implemented (golden ratio, rule of thirds, symmetry etc.) they
could be used to boost the detected aesthetic features. If rule of thirds is loosely
detected in an image, the option could be added to automatically crop the image in a
non-destructive way1 so that the rule of thirds has a stronger presence in the image.
This could also be applied to filters like brightness and contrast but might be less
successful due to the sensitivity in artificially enhancing them.

A good next step would be to refactor and restructure the code to allow plug-in filters,
making filter development easier but also allowing other developers to write their own
that can be dropped into the pipeline.

5.8 Personal conclusion

Overall this project has been more of a learning experience and an opportunity to work
with new technology for me than a well planned experiment. I feel like I have gained a lot
while also not having much to show for it.

1Saving the result as a new image, rather than overwriting the original

35 of 44



References

[1] “Papers with Code - AVA Benchmark (Aesthetics Quality Assessment).” [Online].
Available:
https://paperswithcode.com/sota/aesthetics-quality-assessment-on-ava

[2] “Archillect.” [Online]. Available: https://archillect.com/

[3] “Updating Google Photos’ storage policy to build for the future,” Nov. 2020. [Online].
Available: https://blog.google/products/photos/storage-changes/

[4] B. Schoon, “G Suite’s unlimited Google Drive storage will be discontinued with
Workspace,” Oct. 2020. [Online]. Available:
https://9to5google.com/2020/10/08/google-workspace-drive-storage-limits/

[5] “PREVIEW - Plan your Instagram – Apps on Google Play.” [Online]. Available:
https://play.google.com/store/apps/details?id=com.sensio.instapreview&hl=
en GB&gl=GB

[6] “UNUM — World’s easiest marketing tool.” [Online]. Available:
https://www.unum.la/

[7] “Why Your Instagram Profile is the New Home Page.” [Online]. Available:
https://later.com/blog/instagram-profile-home-page/

[8] K. Ding, K. Ma, and S. Wang, “Intrinsic Image Popularity Assessment,” Proceedings
of the 27th ACM International Conference on Multimedia, pp. 1979–1987, Oct.
2019, arXiv: 1907.01985. [Online]. Available: http://arxiv.org/abs/1907.01985

[9] D. Depoorter and M. Pinckers, “Trophy Camera, 2017-2022.” [Online]. Available:
https://driesdepoorter.be/trophy-camera/

[10] ——, “”trophy.camera”.” [Online]. Available: https://trophy.camera/

[11] “Home | World Press Photo.” [Online]. Available:
https://www.worldpressphoto.org/

[12] “2007 Spencer Platt WY | World Press Photo.” [Online]. Available: https:
//www.worldpressphoto.org/collection/photo-contest/2007/spencer-platt/1

[13] “Golden ratio: A beginner’s guide | Adobe.” [Online]. Available:
https://www.adobe.com/creativecloud/design/discover/golden-ratio.html

36 of 44

https://paperswithcode.com/sota/aesthetics-quality-assessment-on-ava
https://archillect.com/
https://blog.google/products/photos/storage-changes/
https://9to5google.com/2020/10/08/google-workspace-drive-storage-limits/
https://play.google.com/store/apps/details?id=com.sensio.instapreview&hl=en_GB&gl=GB
https://play.google.com/store/apps/details?id=com.sensio.instapreview&hl=en_GB&gl=GB
https://www.unum.la/
https://later.com/blog/instagram-profile-home-page/
http://arxiv.org/abs/1907.01985
https://driesdepoorter.be/trophy-camera/
https://trophy.camera/
https://www.worldpressphoto.org/
https://www.worldpressphoto.org/collection/photo-contest/2007/spencer-platt/1
https://www.worldpressphoto.org/collection/photo-contest/2007/spencer-platt/1
https://www.adobe.com/creativecloud/design/discover/golden-ratio.html


Chapter 5 REFERENCES

[14] “Symmetry in Photography: The Ultimate Guide to Using Symmetry in Your
Photos,” Sept. 2020. [Online]. Available:
https://www.photoworkout.com/symmetry-in-photography/

[15] “What is the Rule of Thirds and How to Use it to Improve Your Photos,” Mar. 2018.
[Online]. Available: https://photographylife.com/the-rule-of-thirds

[16] “Understanding shallow depth of field photography | Adobe.” [Online]. Available:
https://www.adobe.com/creativecloud/photography/discover/
shallow-depth-of-field.html

[17] A. U. W. Team, “Current Modules by Department : Modules , Aberystwyth
University,” last Modified: 2022-05-04. [Online]. Available:
https://www.aber.ac.uk/en/modules/deptcurrent/CS36220/

[18] “Python.org.” [Online]. Available: https://www.python.org/

[19] Google Brain Team, “TensorFlow.org.” [Online]. Available:
https://www.tensorflow.org/

[20] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan, “PyTorch.org.”
[Online]. Available: https://www.pytorch.org

[21] “Keras: the Python deep learning API.” [Online]. Available: https://keras.io/

[22] N. Murray, L. Marchesotti, and F. Perronnin, “AVA: A large-scale database for
aesthetic visual analysis,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition, June 2012, pp. 2408–2415, iSSN: 1063-6919.

[23] “DPChallenge - A Digital Photography Contest.” [Online]. Available:
https://www.dpchallenge.com/

[24] Fing, “AVA Dataset,” Feb. 2022, original-date: 2016-11-13T02:20:32Z. [Online].
Available: https://github.com/imfing/ava downloader

[25] S. Kong, X. Shen, Z. Lin, R. Mech, and C. Fowlkes, “Photo Aesthetics Ranking
Network with Attributes and Content Adaptation,” arXiv:1606.01621 [cs], July 2016,
arXiv: 1606.01621. [Online]. Available: http://arxiv.org/abs/1606.01621

[26] “Flickr.” [Online]. Available: https://www.flickr.com

[27] “skimage — skimage v0.19.2 docs.” [Online]. Available:
https://scikit-image.org/docs/stable/api/skimage.html

[28] “Detecting low contrast images with OpenCV, scikit-image, and Python,” Jan. 2021.
[Online]. Available: https://www.pyimagesearch.com/2021/01/25/
detecting-low-contrast-images-with-opencv-scikit-image-and-python/

[29] “Blur detection with OpenCV,” Sept. 2015. [Online]. Available:
https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/

[30] “OpenCV Fast Fourier Transform (FFT) for blur detection in images and video
streams,” June 2020. [Online]. Available:
https://www.pyimagesearch.com/2020/06/15/
opencv-fast-fourier-transform-fft-for-blur-detection-in-images-and-video-streams/

37 of 44

https://www.photoworkout.com/symmetry-in-photography/
https://photographylife.com/the-rule-of-thirds
https://www.adobe.com/creativecloud/photography/discover/shallow-depth-of-field.html
https://www.adobe.com/creativecloud/photography/discover/shallow-depth-of-field.html
https://www.aber.ac.uk/en/modules/deptcurrent/CS36220/
https://www.python.org/
https://www.tensorflow.org/
https://www.pytorch.org
https://keras.io/
https://www.dpchallenge.com/
https://github.com/imfing/ava_downloader
http://arxiv.org/abs/1606.01621
https://www.flickr.com
https://scikit-image.org/docs/stable/api/skimage.html
https://www.pyimagesearch.com/2021/01/25/detecting-low-contrast-images-with-opencv-scikit-image-and-python/
https://www.pyimagesearch.com/2021/01/25/detecting-low-contrast-images-with-opencv-scikit-image-and-python/
https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
https://www.pyimagesearch.com/2020/06/15/opencv-fast-fourier-transform-fft-for-blur-detection-in-images-and-video-streams/
https://www.pyimagesearch.com/2020/06/15/opencv-fast-fourier-transform-fft-for-blur-detection-in-images-and-video-streams/


Chapter 5 REFERENCES

[31] Stanford University School of Engineering, “Lecture 8 | Deep Learning Software,”
Aug. 2017. [Online]. Available:
https://www.youtube.com/watch?v=6SlgtELqOWc

[32] ——, “Lecture 9 | CNN Architectures,” Aug. 2017. [Online]. Available:
https://www.youtube.com/watch?v=DAOcjicFr1Y

[33] “Training with PyTorch — PyTorch Tutorials 1.11.0+cu102 documentation.” [Online].
Available: https://pytorch.org/tutorials/beginner/introyt/trainingyt.html

[34] “PyTorch: Training your first Convolutional Neural Network (CNN),” July 2021.
[Online]. Available: https://www.pyimagesearch.com/2021/07/19/
pytorch-training-your-first-convolutional-neural-network-cnn/

[35] H.-J. Lee, K.-S. Hong, H. Kang, and S. Lee, “Photo Aesthetics Analysis via DCNN
Feature Encoding,” IEEE Transactions on Multimedia, vol. 19, no. 8, pp.
1921–1932, Aug. 2017, conference Name: IEEE Transactions on Multimedia.

[36] “PyTorch: ResNet.” [Online]. Available:
https://pytorch.org/hub/pytorch vision resnet/

[37] “ImageNet.” [Online]. Available: https://www.image-net.org/index.php

[38] “Keras, Regression, and CNNs,” Jan. 2019. [Online]. Available:
https://www.pyimagesearch.com/2019/01/28/keras-regression-and-cnns/

[39] “Regression with Keras,” Jan. 2019. [Online]. Available:
https://www.pyimagesearch.com/2019/01/21/regression-with-keras/

[40] “House Prices - Advanced Regression Techniques.” [Online]. Available:
https://kaggle.com/competitions/house-prices-advanced-regression-techniques

[41] “PyTorch: Transfer Learning and Image Classification - PyImageSearch.” [Online].
Available: https://pyimagesearch.com/2021/10/11/
pytorch-transfer-learning-and-image-classification/

[42] “PyTorch for AMD ROCm™ Platform now available as Python package.” [Online].
Available: https://pytorch.org/blog/
pytorch-for-amd-rocm-platform-now-available-as-python-package/

[43] “ROCm™: Machine Learning.” [Online]. Available:
https://www.amd.com/en/graphics/servers-solutions-rocm-ml

[44] “Create a VM with attached GPUs | Compute Engine Documentation | Google
Cloud.” [Online]. Available:
https://cloud.google.com/compute/docs/gpus/create-vm-with-gpus

[45] “Slurm Workload Manager - Overview.” [Online]. Available:
https://slurm.schedmd.com/overview.html

[46] “Anaconda | The World’s Most Popular Data Science Platform.” [Online]. Available:
https://www.anaconda.com/

38 of 44

https://www.youtube.com/watch?v=6SlgtELqOWc
https://www.youtube.com/watch?v=DAOcjicFr1Y
https://pytorch.org/tutorials/beginner/introyt/trainingyt.html
https://www.pyimagesearch.com/2021/07/19/pytorch-training-your-first-convolutional-neural-network-cnn/
https://www.pyimagesearch.com/2021/07/19/pytorch-training-your-first-convolutional-neural-network-cnn/
https://pytorch.org/hub/pytorch_vision_resnet/
https://www.image-net.org/index.php
https://www.pyimagesearch.com/2019/01/28/keras-regression-and-cnns/
https://www.pyimagesearch.com/2019/01/21/regression-with-keras/
https://kaggle.com/competitions/house-prices-advanced-regression-techniques
https://pyimagesearch.com/2021/10/11/pytorch-transfer-learning-and-image-classification/
https://pyimagesearch.com/2021/10/11/pytorch-transfer-learning-and-image-classification/
https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package/
https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package/
https://www.amd.com/en/graphics/servers-solutions-rocm-ml
https://cloud.google.com/compute/docs/gpus/create-vm-with-gpus
https://slurm.schedmd.com/overview.html
https://www.anaconda.com/


Chapter 5 REFERENCES

[47] Unsplash, “Photo by ZHENYU LUO on Unsplash.” [Online]. Available:
https://unsplash.com/photos/mhvL46eQis0

[48] “GIMP.” [Online]. Available: https://www.gimp.org/

[49] S. Kong, “Photo Aesthetics Ranking Network with Attributes and Content
Adaptation,” Jan. 2022, original-date: 2016-06-05T06:08:10Z. [Online]. Available:
https://github.com/aimerykong/deepImageAestheticsAnalysis

[50] Intel Corporation, Willow Garage, and Itseez, “OpenCV.” [Online]. Available:
https://opencv.org

[51] “Image Quality Assessment,” Feb. 2022, original-date: 2018-06-12T14:46:09Z.
[Online]. Available: https://github.com/idealo/image-quality-assessment

[52] “Most used social media 2021.” [Online]. Available: https://www.statista.com/
statistics/272014/global-social-networks-ranked-by-number-of-users/

[53] “There’s a way to pick the absolute best images for your content: Apply AI |
TechCrunch.” [Online]. Available: https://techcrunch.com/2020/10/01/
theres-a-way-to-pick-the-absolute-best-images-for-your-content-apply-ai/
?guccounter=1

39 of 44

https://unsplash.com/photos/mhvL46eQis0
https://www.gimp.org/
https://github.com/aimerykong/deepImageAestheticsAnalysis
https://opencv.org
https://github.com/idealo/image-quality-assessment
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://techcrunch.com/2020/10/01/theres-a-way-to-pick-the-absolute-best-images-for-your-content-apply-ai/?guccounter=1
https://techcrunch.com/2020/10/01/theres-a-way-to-pick-the-absolute-best-images-for-your-content-apply-ai/?guccounter=1
https://techcrunch.com/2020/10/01/theres-a-way-to-pick-the-absolute-best-images-for-your-content-apply-ai/?guccounter=1


Appendix REFERENCES

Appendices

40 of 44



Appendix A Third-Party Code and Libraries

Appendix A

Third-Party Code and Libraries

The following third party code and libraries were used to support this project1:

• opencv-python - provides many useful functions for working with images and
video

• numpy - provides multi-dementional arrays and mathematical functions which can
be applied to said arrays

• matplotlib - provides functions for plotting and exporting graphs

• pandas - provides advanced table data structures and mathematical functions to
apply to them

• PyYAML - provides functions to read and write YAML files

• scikit-image - provides many functions for analysing images

• tqdm - provides progress bars

• flake8 - (used in testing) provides linting, helping find inconsistencies with style

• pytest - (used in testing) a python-based testing framework

• pytest-cov - (used in testing) a plugin for pytest which will provide a report on test
coverage

• unittest - (used in testing) the mock module of unittest was used to use mocks in
testing

• mypy - (used in testing) provides linting for type checking

• torch - machine learning framework that provides tools for building and training
models

• torchvision - library that contains datasets and models for neural networks

1This list does not include the libraries pulled down as dependencies of entries in this list.

41 of 44



Appendix B Code Examples

Appendix B

Code Examples

2.1 Woodpecker pipelines

2.1.1 Lint pipeline

The lint pipeline was use to automatically report back on any linting issues with the code
after a commit.

pipeline:
flake8:

image: python:3.8
commands:

- python3.8 -m pip install flake8
- flake8 src/

mypy:
image: python:3.8
commands:

- python3.8 -m pip install mypy
- mypy src/

isort:
image: python:3.8
commands:

- python3.8 -m pip install isort
- isort --diff src/

branches: dev

2.1.2 Test pipeline

pipeline:
unit-tests:

image: python:3.8

42 of 44



Appendix B Code Examples

commands:
- apt update -y && apt install libgl1 -y
- python3.8 -m pip install -r ./requirements.txt
- python3.8 -m pip install -r ./requirements_dev.txt
- python3.8 -m pip install -e .
- pytest test/ -v

branches: dev

2.1.3 Configuration file

---
# Configuration file for the autophographer tool

# List of filters to apply in order
# Note: Possible filters include: brightness, filesize, contrast, focus
filters:

- brightness
- filesize
- contrast
- focus

# Whether or not to apply CNN ranking
CNNrank: False

# Ignore video files and don't bother processing them into frames
# Note: Useful if directory contains original video and indivual
# frames from video (prevents processing the same frames more than once)
ignore_video: True

# Options for brightness filter
brightness_options:

threshold: 0.25

# Options for filesize filter
filesize_options:

threshold: 0.35

# Options for contrast filter
contrast_options:

threshold: 0.35

# Options for focus filter
focus_options:

threshold: 0.5
...

43 of 44



Appendix B Code Examples

2.1.4 pil loader() method

This method was taken from a GitHub issue comment
https://github.com/python-pillow/Pillow/issues/835#issuecomment-53999355

def pil_loader(path):
with open(path, 'rb') as f:

image = Image.open(f)
return image.convert('RGB')

44 of 44

https://github.com/python-pillow/Pillow/issues/835#issuecomment-53999355

	Background & Objectives
	Background
	Context
	Related Work
	Motivation

	Analysis
	Problem Description
	Approach
	Alternative Approaches
	Aim
	Objectives


	Experiment Methods
	Hypothesis

	Software Design, Implementation and Testing
	Development Process
	Languages and Frameworks
	Python
	PyTorch

	Software Tools and Technologies
	VS Code
	Docker
	Gitea
	WoodpeckerCI
	Terraform

	Design
	Overall Architecture
	Detailed design
	Datasets

	Implementation
	Configuration
	Pipeline
	Filters
	CNN

	Testing
	Overall Approach to Testing
	Automated Testing
	CNN testing


	Results and Conclusions
	CNN
	Training
	Testing

	Filters
	Filesize
	Contrast
	Brightness
	Focus


	Evaluation
	Design Decisions
	Development Process
	Approach
	Project State
	Implementation
	Testing
	Experiments

	Report
	Time management
	Futher Work
	Personal conclusion

	References
	Appendices
	Third-Party Code and Libraries
	Code Examples
	Woodpecker pipelines
	Lint pipeline
	Test pipeline
	Configuration file
	pil_loader() method



