2019-10-05 16:57:00 +01:00
# include "quantum.h"
# include "backlight.h"
# include "debug.h"
# if defined(BACKLIGHT_ENABLE) && (defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS))
// This logic is a bit complex, we support 3 setups:
//
// 1. Hardware PWM when backlight is wired to a PWM pin.
// Depending on this pin, we use a different output compare unit.
// 2. Software PWM with hardware timers, but the used timer
// depends on the Audio setup (Audio wins over Backlight).
// 3. Full software PWM, driven by the matrix scan, if both timers are used by Audio.
# if (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == B5 || BACKLIGHT_PIN == B6 || BACKLIGHT_PIN == B7)
# define HARDWARE_PWM
# define ICRx ICR1
# define TCCRxA TCCR1A
# define TCCRxB TCCR1B
# define TIMERx_OVF_vect TIMER1_OVF_vect
# define TIMSKx TIMSK1
# define TOIEx TOIE1
# if BACKLIGHT_PIN == B5
# define COMxx1 COM1A1
# define OCRxx OCR1A
# elif BACKLIGHT_PIN == B6
# define COMxx1 COM1B1
# define OCRxx OCR1B
# elif BACKLIGHT_PIN == B7
# define COMxx1 COM1C1
# define OCRxx OCR1C
# endif
# elif (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == C4 || BACKLIGHT_PIN == C5 || BACKLIGHT_PIN == C6)
# define HARDWARE_PWM
# define ICRx ICR3
# define TCCRxA TCCR3A
# define TCCRxB TCCR3B
# define TIMERx_OVF_vect TIMER3_OVF_vect
# define TIMSKx TIMSK3
# define TOIEx TOIE3
# if BACKLIGHT_PIN == C4
# if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
# error This MCU has no C4 pin!
# else
# define COMxx1 COM3C1
# define OCRxx OCR3C
# endif
# elif BACKLIGHT_PIN == C5
# if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
# error This MCU has no C5 pin!
# else
# define COMxx1 COM3B1
# define OCRxx OCR3B
# endif
# elif BACKLIGHT_PIN == C6
# define COMxx1 COM3A1
# define OCRxx OCR3A
# endif
# elif (defined(__AVR_ATmega16U2__) || defined(__AVR_ATmega32U2__)) && (BACKLIGHT_PIN == B7 || BACKLIGHT_PIN == C5 || BACKLIGHT_PIN == C6)
# define HARDWARE_PWM
# define ICRx ICR1
# define TCCRxA TCCR1A
# define TCCRxB TCCR1B
# define TIMERx_OVF_vect TIMER1_OVF_vect
# define TIMSKx TIMSK1
# define TOIEx TOIE1
# if BACKLIGHT_PIN == B7
# define COMxx1 COM1C1
# define OCRxx OCR1C
# elif BACKLIGHT_PIN == C5
# define COMxx1 COM1B1
# define OCRxx OCR1B
# elif BACKLIGHT_PIN == C6
# define COMxx1 COM1A1
# define OCRxx OCR1A
# endif
# elif defined(__AVR_ATmega32A__) && (BACKLIGHT_PIN == D4 || BACKLIGHT_PIN == D5)
# define HARDWARE_PWM
# define ICRx ICR1
# define TCCRxA TCCR1A
# define TCCRxB TCCR1B
# define TIMERx_OVF_vect TIMER1_OVF_vect
# define TIMSKx TIMSK
# define TOIEx TOIE1
# if BACKLIGHT_PIN == D4
# define COMxx1 COM1B1
# define OCRxx OCR1B
# elif BACKLIGHT_PIN == D5
# define COMxx1 COM1A1
# define OCRxx OCR1A
# endif
# elif defined(__AVR_ATmega328P__) && (BACKLIGHT_PIN == B1 || BACKLIGHT_PIN == B2)
# define HARDWARE_PWM
# define ICRx ICR1
# define TCCRxA TCCR1A
# define TCCRxB TCCR1B
# define TIMERx_OVF_vect TIMER1_OVF_vect
# define TIMSKx TIMSK1
# define TOIEx TOIE1
# if BACKLIGHT_PIN == B1
# define COMxx1 COM1A1
# define OCRxx OCR1A
# elif BACKLIGHT_PIN == B2
# define COMxx1 COM1B1
# define OCRxx OCR1B
# endif
# else
# if !defined(BACKLIGHT_CUSTOM_DRIVER)
# if !defined(B5_AUDIO) && !defined(B6_AUDIO) && !defined(B7_AUDIO)
// Timer 1 is not in use by Audio feature, Backlight can use it
# pragma message "Using hardware timer 1 with software PWM"
# define HARDWARE_PWM
# define BACKLIGHT_PWM_TIMER
# define ICRx ICR1
# define TCCRxA TCCR1A
# define TCCRxB TCCR1B
# define TIMERx_COMPA_vect TIMER1_COMPA_vect
# define TIMERx_OVF_vect TIMER1_OVF_vect
# if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register
# define TIMSKx TIMSK
# else
# define TIMSKx TIMSK1
# endif
# define TOIEx TOIE1
# define OCIExA OCIE1A
# define OCRxx OCR1A
# elif !defined(C6_AUDIO) && !defined(C5_AUDIO) && !defined(C4_AUDIO)
# pragma message "Using hardware timer 3 with software PWM"
// Timer 3 is not in use by Audio feature, Backlight can use it
# define HARDWARE_PWM
# define BACKLIGHT_PWM_TIMER
# define ICRx ICR1
# define TCCRxA TCCR3A
# define TCCRxB TCCR3B
# define TIMERx_COMPA_vect TIMER3_COMPA_vect
# define TIMERx_OVF_vect TIMER3_OVF_vect
# define TIMSKx TIMSK3
# define TOIEx TOIE3
# define OCIExA OCIE3A
# define OCRxx OCR3A
# else
# pragma message "Audio in use - using pure software PWM"
# define NO_HARDWARE_PWM
# endif
# else
# pragma message "Custom driver defined - using pure software PWM"
# define NO_HARDWARE_PWM
# endif
# endif
# ifndef BACKLIGHT_ON_STATE
# define BACKLIGHT_ON_STATE 0
# endif
2019-11-02 21:20:03 +00:00
void backlight_on ( pin_t backlight_pin ) {
2019-10-05 16:57:00 +01:00
# if BACKLIGHT_ON_STATE == 0
writePinLow ( backlight_pin ) ;
# else
writePinHigh ( backlight_pin ) ;
# endif
}
2019-11-02 21:20:03 +00:00
void backlight_off ( pin_t backlight_pin ) {
2019-10-05 16:57:00 +01:00
# if BACKLIGHT_ON_STATE == 0
writePinHigh ( backlight_pin ) ;
# else
writePinLow ( backlight_pin ) ;
# endif
}
# if defined(NO_HARDWARE_PWM) || defined(BACKLIGHT_PWM_TIMER) // pwm through software
// we support multiple backlight pins
# ifndef BACKLIGHT_LED_COUNT
# define BACKLIGHT_LED_COUNT 1
# endif
# if BACKLIGHT_LED_COUNT == 1
# define BACKLIGHT_PIN_INIT \
{ BACKLIGHT_PIN }
# else
# define BACKLIGHT_PIN_INIT BACKLIGHT_PINS
# endif
# define FOR_EACH_LED(x) \
for ( uint8_t i = 0 ; i < BACKLIGHT_LED_COUNT ; i + + ) { \
2019-11-17 14:02:26 +00:00
pin_t backlight_pin = backlight_pins [ i ] ; \
2019-10-05 16:57:00 +01:00
{ x } \
}
2019-11-02 21:20:03 +00:00
static const pin_t backlight_pins [ BACKLIGHT_LED_COUNT ] = BACKLIGHT_PIN_INIT ;
2019-10-05 16:57:00 +01:00
# else // full hardware PWM
// we support only one backlight pin
2019-11-02 21:20:03 +00:00
static const pin_t backlight_pin = BACKLIGHT_PIN ;
2019-10-05 16:57:00 +01:00
# define FOR_EACH_LED(x) x
# endif
# ifdef NO_HARDWARE_PWM
__attribute__ ( ( weak ) ) void backlight_init_ports ( void ) {
// Setup backlight pin as output and output to on state.
FOR_EACH_LED ( setPinOutput ( backlight_pin ) ; backlight_on ( backlight_pin ) ; )
# ifdef BACKLIGHT_BREATHING
if ( is_backlight_breathing ( ) ) {
breathing_enable ( ) ;
}
# endif
}
__attribute__ ( ( weak ) ) void backlight_set ( uint8_t level ) { }
uint8_t backlight_tick = 0 ;
# ifndef BACKLIGHT_CUSTOM_DRIVER
void backlight_task ( void ) {
if ( ( 0xFFFF > > ( ( BACKLIGHT_LEVELS - get_backlight_level ( ) ) * ( ( BACKLIGHT_LEVELS + 1 ) / 2 ) ) ) & ( 1 < < backlight_tick ) ) {
FOR_EACH_LED ( backlight_on ( backlight_pin ) ; )
} else {
FOR_EACH_LED ( backlight_off ( backlight_pin ) ; )
}
backlight_tick = ( backlight_tick + 1 ) % 16 ;
}
# endif
# ifdef BACKLIGHT_BREATHING
# ifndef BACKLIGHT_CUSTOM_DRIVER
# error "Backlight breathing only available with hardware PWM. Please disable."
# endif
# endif
# else // hardware pwm through timer
# ifdef BACKLIGHT_PWM_TIMER
// The idea of software PWM assisted by hardware timers is the following
// we use the hardware timer in fast PWM mode like for hardware PWM, but
// instead of letting the Output Match Comparator control the led pin
// (which is not possible since the backlight is not wired to PWM pins on the
// CPU), we do the LED on/off by oursleves.
// The timer is setup to count up to 0xFFFF, and we set the Output Compare
// register to the current 16bits backlight level (after CIE correction).
// This means the CPU will trigger a compare match interrupt when the counter
// reaches the backlight level, where we turn off the LEDs,
// but also an overflow interrupt when the counter rolls back to 0,
// in which we're going to turn on the LEDs.
// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz.
// Triggered when the counter reaches the OCRx value
ISR ( TIMERx_COMPA_vect ) { FOR_EACH_LED ( backlight_off ( backlight_pin ) ; ) }
// Triggered when the counter reaches the TOP value
// this one triggers at F_CPU/65536 =~ 244 Hz
ISR ( TIMERx_OVF_vect ) {
# ifdef BACKLIGHT_BREATHING
if ( is_breathing ( ) ) {
breathing_task ( ) ;
}
# endif
// for very small values of OCRxx (or backlight level)
// we can't guarantee this whole code won't execute
// at the same time as the compare match interrupt
// which means that we might turn on the leds while
// trying to turn them off, leading to flickering
// artifacts (especially while breathing, because breathing_task
// takes many computation cycles).
// so better not turn them on while the counter TOP is very low.
if ( OCRxx > 256 ) {
FOR_EACH_LED ( backlight_on ( backlight_pin ) ; )
}
}
# endif
# define TIMER_TOP 0xFFFFU
// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness ( uint16_t v ) {
if ( v < = 5243 ) // if below 8% of max
return v / 9 ; // same as dividing by 900%
else {
uint32_t y = ( ( ( uint32_t ) v + 10486 ) < < 8 ) / ( 10486 + 0xFFFFUL ) ; // add 16% of max and compare
// to get a useful result with integer division, we shift left in the expression above
// and revert what we've done again after squaring.
y = y * y * y > > 8 ;
if ( y > 0xFFFFUL ) // prevent overflow
return 0xFFFFU ;
else
return ( uint16_t ) y ;
}
}
// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
static inline void set_pwm ( uint16_t val ) { OCRxx = val ; }
# ifndef BACKLIGHT_CUSTOM_DRIVER
__attribute__ ( ( weak ) ) void backlight_set ( uint8_t level ) {
if ( level > BACKLIGHT_LEVELS ) level = BACKLIGHT_LEVELS ;
if ( level = = 0 ) {
# ifdef BACKLIGHT_PWM_TIMER
if ( OCRxx ) {
TIMSKx & = ~ ( _BV ( OCIExA ) ) ;
TIMSKx & = ~ ( _BV ( TOIEx ) ) ;
FOR_EACH_LED ( backlight_off ( backlight_pin ) ; )
}
# else
// Turn off PWM control on backlight pin
TCCRxA & = ~ ( _BV ( COMxx1 ) ) ;
# endif
} else {
# ifdef BACKLIGHT_PWM_TIMER
if ( ! OCRxx ) {
TIMSKx | = _BV ( OCIExA ) ;
TIMSKx | = _BV ( TOIEx ) ;
}
# else
// Turn on PWM control of backlight pin
TCCRxA | = _BV ( COMxx1 ) ;
# endif
}
// Set the brightness
set_pwm ( cie_lightness ( TIMER_TOP * ( uint32_t ) level / BACKLIGHT_LEVELS ) ) ;
}
void backlight_task ( void ) { }
# endif // BACKLIGHT_CUSTOM_DRIVER
# ifdef BACKLIGHT_BREATHING
# define BREATHING_NO_HALT 0
# define BREATHING_HALT_OFF 1
# define BREATHING_HALT_ON 2
# define BREATHING_STEPS 128
static uint8_t breathing_period = BREATHING_PERIOD ;
static uint8_t breathing_halt = BREATHING_NO_HALT ;
static uint16_t breathing_counter = 0 ;
# ifdef BACKLIGHT_PWM_TIMER
static bool breathing = false ;
bool is_breathing ( void ) { return breathing ; }
# define breathing_interrupt_enable() \
do { \
breathing = true ; \
} while ( 0 )
# define breathing_interrupt_disable() \
do { \
breathing = false ; \
} while ( 0 )
# else
bool is_breathing ( void ) { return ! ! ( TIMSKx & _BV ( TOIEx ) ) ; }
# define breathing_interrupt_enable() \
do { \
TIMSKx | = _BV ( TOIEx ) ; \
} while ( 0 )
# define breathing_interrupt_disable() \
do { \
TIMSKx & = ~ _BV ( TOIEx ) ; \
} while ( 0 )
# endif
# define breathing_min() \
do { \
breathing_counter = 0 ; \
} while ( 0 )
# define breathing_max() \
do { \
breathing_counter = breathing_period * 244 / 2 ; \
} while ( 0 )
void breathing_enable ( void ) {
breathing_counter = 0 ;
breathing_halt = BREATHING_NO_HALT ;
breathing_interrupt_enable ( ) ;
}
void breathing_pulse ( void ) {
if ( get_backlight_level ( ) = = 0 )
breathing_min ( ) ;
else
breathing_max ( ) ;
breathing_halt = BREATHING_HALT_ON ;
breathing_interrupt_enable ( ) ;
}
void breathing_disable ( void ) {
breathing_interrupt_disable ( ) ;
// Restore backlight level
backlight_set ( get_backlight_level ( ) ) ;
}
void breathing_self_disable ( void ) {
if ( get_backlight_level ( ) = = 0 )
breathing_halt = BREATHING_HALT_OFF ;
else
breathing_halt = BREATHING_HALT_ON ;
}
void breathing_toggle ( void ) {
if ( is_breathing ( ) )
breathing_disable ( ) ;
else
breathing_enable ( ) ;
}
void breathing_period_set ( uint8_t value ) {
if ( ! value ) value = 1 ;
breathing_period = value ;
}
void breathing_period_default ( void ) { breathing_period_set ( BREATHING_PERIOD ) ; }
void breathing_period_inc ( void ) { breathing_period_set ( breathing_period + 1 ) ; }
void breathing_period_dec ( void ) { breathing_period_set ( breathing_period - 1 ) ; }
/* To generate breathing curve in python:
* from math import sin , pi ; [ int ( sin ( x / 128.0 * pi ) * * 4 * 255 ) for x in range ( 128 ) ]
*/
static const uint8_t breathing_table [ BREATHING_STEPS ] PROGMEM = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , 15 , 17 , 20 , 24 , 28 , 32 , 36 , 41 , 46 , 51 , 57 , 63 , 70 , 76 , 83 , 91 , 98 , 106 , 113 , 121 , 129 , 138 , 146 , 154 , 162 , 170 , 178 , 185 , 193 , 200 , 207 , 213 , 220 , 225 , 231 , 235 , 240 , 244 , 247 , 250 , 252 , 253 , 254 , 255 , 254 , 253 , 252 , 250 , 247 , 244 , 240 , 235 , 231 , 225 , 220 , 213 , 207 , 200 , 193 , 185 , 178 , 170 , 162 , 154 , 146 , 138 , 129 , 121 , 113 , 106 , 98 , 91 , 83 , 76 , 70 , 63 , 57 , 51 , 46 , 41 , 36 , 32 , 28 , 24 , 20 , 17 , 15 , 12 , 10 , 8 , 6 , 5 , 4 , 3 , 2 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
// Use this before the cie_lightness function.
static inline uint16_t scale_backlight ( uint16_t v ) { return v / BACKLIGHT_LEVELS * get_backlight_level ( ) ; }
# ifdef BACKLIGHT_PWM_TIMER
void breathing_task ( void )
# else
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
* about 244 times per second .
*/
ISR ( TIMERx_OVF_vect )
# endif
{
uint16_t interval = ( uint16_t ) breathing_period * 244 / BREATHING_STEPS ;
// resetting after one period to prevent ugly reset at overflow.
breathing_counter = ( breathing_counter + 1 ) % ( breathing_period * 244 ) ;
uint8_t index = breathing_counter / interval % BREATHING_STEPS ;
if ( ( ( breathing_halt = = BREATHING_HALT_ON ) & & ( index = = BREATHING_STEPS / 2 ) ) | | ( ( breathing_halt = = BREATHING_HALT_OFF ) & & ( index = = BREATHING_STEPS - 1 ) ) ) {
breathing_interrupt_disable ( ) ;
}
set_pwm ( cie_lightness ( scale_backlight ( ( uint16_t ) pgm_read_byte ( & breathing_table [ index ] ) * 0x0101U ) ) ) ;
}
# endif // BACKLIGHT_BREATHING
__attribute__ ( ( weak ) ) void backlight_init_ports ( void ) {
// Setup backlight pin as output and output to on state.
FOR_EACH_LED ( setPinOutput ( backlight_pin ) ; backlight_on ( backlight_pin ) ; )
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
# ifdef BACKLIGHT_PWM_TIMER
// TimerX setup, Fast PWM mode count to TOP set in ICRx
TCCRxA = _BV ( WGM11 ) ; // = 0b00000010;
// clock select clk/1
TCCRxB = _BV ( WGM13 ) | _BV ( WGM12 ) | _BV ( CS10 ) ; // = 0b00011001;
# else // hardware PWM
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
/*
14.8 .3 :
" In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]. "
" In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). "
*/
TCCRxA = _BV ( COMxx1 ) | _BV ( WGM11 ) ; // = 0b00001010;
TCCRxB = _BV ( WGM13 ) | _BV ( WGM12 ) | _BV ( CS10 ) ; // = 0b00011001;
# endif
// Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
ICRx = TIMER_TOP ;
backlight_init ( ) ;
# ifdef BACKLIGHT_BREATHING
if ( is_backlight_breathing ( ) ) {
breathing_enable ( ) ;
}
# endif
}
# endif // hardware backlight
# else // no backlight
__attribute__ ( ( weak ) ) void backlight_init_ports ( void ) { }
__attribute__ ( ( weak ) ) void backlight_set ( uint8_t level ) { }
# endif // backlight