2020-10-23 07:47:14 +01:00
|
|
|
/* Copyright 2020 Jay Greco
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Remote keyboard is an experimental feature that allows for connecting another
|
|
|
|
keyboard, macropad, numpad, or accessory without requiring an additional USB connection.
|
|
|
|
The "remote keyboard" forwards its keystrokes using UART serial over TRRS. Dynamic VUSB
|
|
|
|
detect allows the keyboard automatically switch to host or remote mode depending on
|
|
|
|
which is connected to the USB port.
|
|
|
|
|
|
|
|
Possible functionality includes the ability to send data from the host to the remote using
|
|
|
|
a reverse link, allowing for LED sync, configuration, and more data sharing between devices.
|
|
|
|
This will require a new communication protocol, as the current one is limited.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "remote_kb.h"
|
2021-01-27 06:42:49 +00:00
|
|
|
#include "uart.h"
|
2020-10-23 07:47:14 +01:00
|
|
|
|
|
|
|
uint8_t
|
|
|
|
msg[UART_MSG_LEN],
|
|
|
|
msg_idx = 0;
|
|
|
|
|
|
|
|
bool
|
|
|
|
is_host = true;
|
|
|
|
|
|
|
|
// Private functions
|
|
|
|
|
|
|
|
static bool vbus_detect(void) {
|
|
|
|
#if defined(__AVR_ATmega32U4__)
|
|
|
|
//returns true if VBUS is present, false otherwise.
|
|
|
|
USBCON |= (1 << OTGPADE); //enables VBUS pad
|
|
|
|
_delay_us(10);
|
|
|
|
return (USBSTA & (1<<VBUS)); //checks state of VBUS
|
|
|
|
#else
|
|
|
|
#error vbus_detect is not implemented for this architecure!
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint8_t chksum8(const unsigned char *buf, size_t len) {
|
|
|
|
unsigned int sum;
|
|
|
|
for (sum = 0 ; len != 0 ; len--)
|
|
|
|
sum += *(buf++);
|
|
|
|
return (uint8_t)sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void send_msg(uint16_t keycode, bool pressed) {
|
|
|
|
msg[IDX_PREAMBLE] = UART_PREAMBLE;
|
|
|
|
msg[IDX_KCLSB] = (keycode & 0xFF);
|
|
|
|
msg[IDX_KCMSB] = (keycode >> 8) & 0xFF;
|
|
|
|
msg[IDX_PRESSED] = pressed;
|
|
|
|
msg[IDX_CHECKSUM] = chksum8(msg, UART_MSG_LEN-1);
|
|
|
|
|
|
|
|
for (int i=0; i<UART_MSG_LEN; i++) {
|
|
|
|
uart_putchar(msg[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void print_message_buffer(void) {
|
|
|
|
for (int i=0; i<UART_MSG_LEN; i++) {
|
|
|
|
dprintf("msg[%u]: %u\n", i, msg[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void process_uart(void) {
|
|
|
|
uint8_t chksum = chksum8(msg, UART_MSG_LEN-1);
|
|
|
|
if (msg[IDX_PREAMBLE] != UART_PREAMBLE || msg[IDX_CHECKSUM] != chksum) {
|
|
|
|
dprintf("UART checksum mismatch!\n");
|
|
|
|
print_message_buffer();
|
|
|
|
dprintf("calc checksum: %u\n", chksum);
|
|
|
|
} else {
|
|
|
|
uint16_t keycode = (uint16_t)msg[IDX_KCLSB] | ((uint16_t)msg[IDX_KCMSB] << 8);
|
|
|
|
bool pressed = (bool)msg[IDX_PRESSED];
|
|
|
|
if (IS_RM_KC(keycode)) {
|
|
|
|
keyrecord_t record;
|
|
|
|
record.event.pressed = pressed;
|
|
|
|
if (pressed) dprintf("Remote macro: press [%u]\n", keycode);
|
|
|
|
else dprintf("Remote macro: release [%u]\n", keycode);
|
|
|
|
process_record_user(keycode, &record);
|
|
|
|
} else {
|
|
|
|
if (pressed) {
|
|
|
|
dprintf("Remote: press [%u]\n", keycode);
|
|
|
|
register_code(keycode);
|
|
|
|
} else {
|
|
|
|
dprintf("Remote: release [%u]\n", keycode);
|
|
|
|
unregister_code(keycode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void get_msg(void) {
|
|
|
|
while (uart_available()) {
|
|
|
|
msg[msg_idx] = uart_getchar();
|
|
|
|
dprintf("idx: %u, recv: %u\n", msg_idx, msg[msg_idx]);
|
|
|
|
if (msg_idx == 0 && (msg[msg_idx] != UART_PREAMBLE)) {
|
|
|
|
dprintf("Byte sync error!\n");
|
|
|
|
msg_idx = 0;
|
|
|
|
} else if (msg_idx == (UART_MSG_LEN-1)) {
|
|
|
|
process_uart();
|
|
|
|
msg_idx = 0;
|
|
|
|
} else {
|
|
|
|
msg_idx++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_host_incoming(void) {
|
|
|
|
get_msg();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_host_outgoing(void) {
|
|
|
|
// for future reverse link use
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_remote_incoming(void) {
|
|
|
|
// for future reverse link use
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_remote_outgoing(uint16_t keycode, keyrecord_t *record) {
|
|
|
|
if (IS_HID_KC(keycode) || IS_RM_KC(keycode)) {
|
|
|
|
dprintf("Remote: send [%u]\n", keycode);
|
|
|
|
send_msg(keycode, record->event.pressed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Public functions
|
|
|
|
|
|
|
|
void matrix_init_remote_kb(void) {
|
|
|
|
uart_init(SERIAL_UART_BAUD);
|
|
|
|
is_host = vbus_detect();
|
|
|
|
}
|
|
|
|
|
|
|
|
void process_record_remote_kb(uint16_t keycode, keyrecord_t *record) {
|
|
|
|
#if defined (KEYBOARD_HOST)
|
|
|
|
handle_host_outgoing();
|
|
|
|
|
|
|
|
#elif defined(KEYBOARD_REMOTE)
|
|
|
|
handle_remote_outgoing(keycode, record);
|
|
|
|
|
|
|
|
#else //auto check with VBUS
|
|
|
|
if (is_host) {
|
|
|
|
handle_host_outgoing();
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
handle_remote_outgoing(keycode, record);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void matrix_scan_remote_kb(void) {
|
|
|
|
#if defined(KEYBOARD_HOST)
|
|
|
|
handle_host_incoming();
|
|
|
|
|
|
|
|
#elif defined (KEYBOARD_REMOTE)
|
|
|
|
handle_remote_incoming();
|
|
|
|
|
|
|
|
#else //auto check with VBUS
|
|
|
|
if (is_host) {
|
|
|
|
handle_host_incoming();
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
handle_remote_incoming();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|