
Software Engineering Group Project 20
Design Specification

Author: Brad Corbett [brc9],
Henry Dugmore [hjd3],
Kain Bryan-Jones [kab74],
Luke Wybar [law39],
Marcin Jakob [maj83],
Oscar Pocock [osp1],
Tom Perry [top1],
Waylen Watts [ncw]

Config Ref: DesignSpecGroup20
Date: 30th March 2020
Version: 1.0
Status: Release

Aberystwyth University / Computer Science Page 1 of 19

Department of Computer Science
Aberystwyth University
Aberystwyth
Ceredigion
SY23 3DB

Copyright © Aberystwyth University 2020

Software Engineering Group Project 20: Design Specification/1.0 (Release)

CONTENTS

CONTENTS...2
1. INTRODUCTION..3

1.1 Purpose of this Document..3
1.2 Scope..3
1.3 Objectives...3

2. DECOMPOSITION DESCRIPTION..3
2.1 Programs in System..3
2.2 Significant Classes...3
2.3 Table Mapping Requirements to Classes...4

3. DEPENDENCY DESCRIPTION..5
3.1 Component Diagram..5

4. INTERFACE DESCRIPTION...5
4.1 JSON Package..5
4.2 Self-Assessment Package...6
4.3 JavaFX package..7
4.4 Test Package...8

5. DETAILED DESIGN...9
5.1 Sequence Diagrams..9
5.2 Significant Algorithms...16
5.3 Significant Data Structures...17

REFERENCES...18
DOCUMENT HISTORY...19

Aberystwyth University / Computer Science Page 2 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

1. INTRODUCTION

1.1 Purpose of this Document

The purpose of this document is to describe the design of the Welsh Vocabulary Tutor program which adheres
to the Design Specification Standard Document [2] and General Documentation Standards [1] supplied by the
client.

1.2 Scope

This document covers a description of how the Welsh Vocabulary Tutor is designed, including how the software
will be broken down. This document should be read by all project members. It is assumed that the reader is
already familiar with the Welsh Vocabulary Tutor Requirements Specification [3] and the Design Specification
Standards [2].

1.3 Objectives

The objectives of this document are to:

• Identify significant classes.

• Link functional requirements to classes.

• Identify and describe dependencies between modules.

• Determine the public methods of said classes.

• Describe how the classes interact with each other for major operations.

• Identify significant algorithms.

• Identify significant data structures.

2. DECOMPOSITION DESCRIPTION

2.1 Programs in System

Our system is made up of a singular program. This program provides all the functionality required as specified
in the Requirements Specification for Welsh Vocabulary Tutor [3] document, including, but not limited to,
importing words, adding words manually, practicing words and monitoring achievement through testing the
user’s word knowledge. The program will also implement all functionality required to pass the functionality
tests defined in the Test Specification [4] document.

Our program structure will consist of four key packages including:

• JSON – Package that is responsible for handling JSON including the reading/writing of definitions to
and from dictionary.json.

• JavaFX – Package that contains the JavaFX classes that are all responsible for displaying the UI to the
user.

• Self-assessment – Package for holding the classes responsible for generating the user's self-assessment
questions.

• Test – Package responsible for holding all the JUnit tests that ensure the program works properly.

2.2 Significant Classes

2.2.1 JSON Package

• JSONProcessor – Contains functions responsible for saving and loading to and from the JSON file
which will be provided by the user, using the Jackson JSON library.

Aberystwyth University / Computer Science Page 3 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

• WelshDictionary – Class containing all the fields needed for storing dictionary definitions including
Welsh and English translations along with its word type and whether it’s a practice word or not.

2.2.2 JavaFX Package

• Application – Programs main class that contains a list of the loaded dictionary definitions and is
responsible for running the application.

• SharedCodeController – Abstract class that contains all the shared FXML elements between the
different controller classes including the sliding menu and the test score counter, to reduce code
duplication. This will be extended by all the controller classes.

• ScreenSwitch – Class that contains all the scenes for the JavaFX user interface and will be responsible
for initiating the transition to new ones.

2.2.3 Self-Assessment Package

• Question – Abstract class contains the basic information that all the shared information between the
types of test questions including the questions’ correct answers and possible answers. All question
classes will extend this class.

• WordMatchQuestion – Class that contains all the details needed for the ‘Match the Meanings’
question type, including the 4 different practice definitions. This class will be used by the
AssessmentGenerator and extends the Question class.

• WordEnterQuestion - Class that contains all the details needed for the ‘Translation’ question type,
including the practice definition that is being tested. This class will be used by the
AssessmentGenerator and extends the Question class.

• SixMeaningsQuestion – Class that contains all the details needed for the ‘Six Meanings’ question
type, including the correct answer along with the five other possible answers. This class will be used by
the AssessmentGenerator and extends the Question class.

• AssessmentGenerator – Class that contains methods to create a randomised list of questions that will
contain a random distribution of question types.

2.2.4 Test Package

• JSONTest – Class that contains methods which will be used to test that the JSON package classes are
correctly loading and saving to and from the JSON file.

• JavaFXTest – Class that contains methods to test that the application class is correctly storing the full
list of dictionary definitions.
Furthermore, this class will also test that the elements such as the sliding menu and score counter are
working as intended, along with testing that scenes are ending and transitioning correctly when
applicable.

• SelfAssesmentTest – This class will test that the lists pulled in the self-assessment package are indeed
random, while also pulling the matching data from the dictionary.

2.3 Table Mapping Requirements to Classes

Functional Requirement Classes implementing
FR1 Startup Application,

LaunchScreenController,
SharedCodeController,
JSONProcesser,
WelshDictionary

FR2 Ordering of the list LaunchScreenController,
WelshDictionary

FR3 Searching of list LaunchScreenController,
WelshDictionary

FR4 Maintaining a practice list Application,
LaunchScreenController,

Aberystwyth University / Computer Science Page 4 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

WelshDictionary

FR5 Adding new words to the dictionary Application,
AddwordScreenController

FR6 Display of words Application,
LaunchScreenController

FR7 Reviewing the practice list Application,
PracticeListScreenController

FR8 Flashcards Application,
FlashcardScreenController

FR9 Tests on practice words Application,
SixMeaningsQuestionScreenController,
WordEnterQuestionScreenController,
WordMatchQuestionScreenCOntroler

FR10 Running tests Application,
TestSelectionScreenController,
SixMeaningsQuestionScreenController,
WordEnterQuestionScreenController,
WordMatchQuestionScreenCOntroler

3. DEPENDENCY DESCRIPTION

3.1 Component Diagram

Figure 1: Component diagram of the Welsh Vocabulary App

Aberystwyth University / Computer Science Page 5 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

4. INTERFACE DESCRIPTION

4.1 JSON Package

4.1.1 JSONProcessor

Class that will handle the program’s JSON related work, including the loading/saving of the files.

• Public LinkedList<WelshDictionary> load(File dictionaryFile); - Method for loading the list of
dictionary definitions from a JSON file.

• Public void save(File dictionaryFile, LinkedList<WelshDictionary> words); - Method for saving
the list of dictionary definitions to a JSON file.

4.1.2 WelshDictionary implements Comparable<WelshDictionary>

Class that will hold each word’s definition with all the necessary fields.

• Public WelshDictionary(); - Default constructor for WelshDictionary.

• Public WelshDictionary(String english, String welsh, String wordType, Boolean practiceWord); -
Constructor for WelshDictionary that includes a full list of parameters.

• Public String getWelsh(); - Getter method for the dictionary objects welsh variable.

• Public String getEnglish(); - Getter method for the dictionary objects english variable.

• Public String getWordType(); - Getter method for the dictionary objects word type variable.

• Public boolean isPracticeWord(); - Getter method for the dictionary objects practiceWord variable.

• Public void setWelsh(String welsh); - Setter method for the dictionary objects welsh variable.

• Public void setEnglish(String english); - Setter method for the dictionary objects english variable.

• Public void setWordType(String wordType); - Setter method for the dictionary objects word type
variable.

• Public void setPracticeWord(boolean practiceWord); - Setter method for the dictionary objects
practiceWord variable.

• @Override Public boolean equals(Object obj); - Equals method for checking if two dictionary
objects are equal.

• @Override Public int compareTo(Object obj); - Method for comparing two WelshDictionary
objects, used for sorting the list of definitions alphabetically.

4.2 Self-Assessment Package

4.2.1 Question

Abstract class that holds general information such as each questions possible answers and also the correct
answer.

• Public boolean checkAnswer(String answer); - Method to check whether a given answer matches
the question’s correct answer.

• Public LinkedList<WelshDictionary> getPossibleAnswers(); - Getter method for the question
objects possible answers.

4.2.2 AssessmentGenerator extends Question

• Public LinkedList<Question> generateAssessment(LinkedList<WelshDictionary> words); -
Method that will generate a randomized list of questions consisting of random distribution of questions
types, using the dictionary’s practice words as the parameter.

Aberystwyth University / Computer Science Page 6 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

• Public LinkedList<Question> generateWordMatch(LinkedList<WelshDictionary>); - Method
that will generate a list of questions that are the type ‘Match The Meanings’, using the dictionary's
practice words as the parameter.

• Public LinkedList<Question> generateSixMeanings(LinkedList<WelshDictionary>); - Method
that will generate a list of questions that are the type ‘6 Meanings’, using the dictionary's practice
words as the parameter.

• Public LinkedList<Question> generateWordEnter(LinkedList<WelshDictionary>); - Method that
will generate a list of questions that are the type ‘Translation’, using the dictionary's practice words as
the parameter.

4.2.3 WordEnterQuestion extends Question

• Public WordEnterQuestion (WelshDictionary correctAnswer); - Constructor for
WordEnterQuestion that takes a WelshDictionary object that is being tested on as the parameter.

4.2.4 WordMatchQuestion extends Question

• Public WordMatchQuestion (WelshDictionary[4] correctAnswers); - Constructor for
WordMatchQuestion that takes four WelshDictionary objects that are being tested on as the
parameters.

4.2.5 SixMeaningQuestion extends Question

• Public SixMeaningQuestion (WelshDictionary correctAnswer, LinkedList<WelshDictionary>
dictionary); - Constructor for SixMeaningQuestion that takes one WelshDictionary object that is being
tested along with the full list of words which will be used to generate randomized possible answers as
the parameters.

4.3 JavaFX package

4.3.1 Application

Programs main class where the program will start from. This class will also hold the programs dictionary
definitions.

• Main() – runs app.

4.3.2 SharedCodeController

Abstract class that will hold all of the repeated information between controllers including common FXML
elements that will be derived by the controllers. This could include the sliding menu options and user test scores.

4.3.3 ScreenSwitch extends SharedCodeController

• Public void swap(SceneEnum newScene); - Method that is responsible for the switching between
JavaFX, with it taking the new scene’s name as a parameter.

4.4 Test Package

4.4.1 JSONTest

Class that contains methods which will be used to test that the JSON package classes are correctly loading and
saving to and from the JSON file.

• @test Public void testLoad() - JUnit test to check that the JSON file has been correctly loaded.

• @test Public void testSave() - JUnit test to check that any changes to the list of definitions are
updated and saved to the JSON file accordingly.

Aberystwyth University / Computer Science Page 7 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

4.4.2 JavaFXTest

Class that contains methods to test that the application class is correctly storing the full list of dictionary
definitions. This class will also test that the elements such as the sliding menu and score counter are working as
intended, along with testing that scenes are ending and transitioning correctly when applicable.

• @test Public void testDefinition() - Tests to confirm that the dictionary definitions loaded match to an
identical base set.

• @test Public void testScoreCounter() - Test to confirm that the user score counter correctly increases
by increments on one.

• @test Public void testFindWord – A preset search test to confirm that words are being searched for
correctly.

• @test Public void testAddWord() - A test to check that a new word is correctly added and saved to
the JSON file.

• @test Public void testRemoveWord() - A test to check that the JSON file is correctly updated when a
word is removed.

4.4.3 SelfAssessmentTest

This class will test that the lists pulled in the self-assessment package are indeed random, while also pulling the
matching data from the dictionary.

• @test Public void testRandomReturn() - Test to confirm that the random number return in working
correctly.

• @test Public void testAvailableSelfAssessment() - Test to check and confirm that the games types
are either made available or are locked off depending on the number of practice list questions.

• @test Public void testUserAnswer – Test that will check that an input by a user is correctly checked
to the correct answer.

Aberystwyth University / Computer Science Page 8 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5. DETAILED DESIGN

5.1 Sequence Diagrams

5.1.1 Use Case 1 View dictionary

Figure 2: Sequence diagram for displaying the Dictionary

Aberystwyth University / Computer Science Page 9 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.2 Use Case 2 Search for a word

Figure 3: Sequence diagram for performing word search

Aberystwyth University / Computer Science Page 10 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.3 Use Case 3 View practice list

Figure 4: Sequence diagram for displaying the practice list

Aberystwyth University / Computer Science Page 11 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.4 Use Case 4 Modify the practice list

Figure 5: Sequence diagram for removing words from the practice list

5.1.5 Use Case 5.1 Start ‘Match The Meaning’ test

Figure 6: Sequence diagram for the ’Match The Meaning’ test

Aberystwyth University / Computer Science Page 12 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.6 Use Case 5.2 Start ‘6 Meanings’ test

5.1.7 Use Case 5.3 Start ‘Translation’ test

Figure 8: Sequence diagram for the ’Translation’ test

Aberystwyth University / Computer Science Page 13 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.8 Use Case 6 View flashcards

Figure 9: Sequence diagram for loading the dictionary list

Aberystwyth University / Computer Science Page 14 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.9 Use Case 7 Add a new word

Figure 10: Sequence diagram for adding new words

Aberystwyth University / Computer Science Page 15 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.1.10 Use Case 8 Change word ordering

Figure 11: Sequence diagram for changing the ordering of words

5.2 Significant Algorithms

5.2.1 JavaFX screen switching algorithm

All JavaFX screen will be loaded in at runtime and switching will be achieved by calling a method in the
JavaFX control class which takes the name of the requested screen as an enumeration and handles preparing the
screen and finally puts it on the stage.

5.2.2 Live-searching algorithm

The live-search shall be achieved by modifying the equals method to consider the length of input strings,
therefore allowing search to match strings which haven’t been fully entered yet.

5.2.3 Adding words algorithm

Each new word added will create a new WelshDictionary object, constructed using the Welsh, English and word
type to populate the instance variables. This is then added to a list data structure, which is then used by other
modules of the program for displaying, practicing and testing words with the user.

5.2.4 Saving algorithm

The saving shall be performed at the closure of the program, this will be completed through the uses of the
Jackson library, this provides a simple way of encoding the data in the program into JSON. This is then written
out to a flat file.

Aberystwyth University / Computer Science Page 16 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

5.2.5 Loading algorithm

The loading algorithm will run on request of the user through a button press. It will use JavaFX to open a
filePicker, and when the user picks a file with valid JSON, this will be loaded in and mapped to
WelshDictionary objects by the Jackson library, these objects are then added to the list data structure.

5.3 Significant Data Structures

5.3.1 Linked Lists:

Currently the program works with WelshDictionary objects, which store the Welsh translation of the word, its
English translation and the word type (verb, masculine noun, etc). These objects are linked lists which would
point to the next object in the dictionary, i.e. it would have the next word down adjacent to the object.

Aberystwyth University / Computer Science Page 17 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

REFERENCES

[1] Software Engineering Group Projects: General Documentation Standards. C. J. Price, N. W. Hardy, B.P.
Tiddeman. SE.QA.03. 1.8 Release

[2]Software Engineering Group Projects: Design Specification Standards. C. J. Price, SE.QA.05. 2.1 Release
[3]Software Engineering Group Projects: Welsh Vocabulary Tutor Requirement Specifications. C. J. Price,

SE.QA.CSRS. 1.1 Release
[4]Software Engineering Group Project 20: Test Specification. N. C. Watts, H. J. Dugmore, TestSpecGroup20.

1.0 Release

Aberystwyth University / Computer Science Page 18 of 19

Software Engineering Group Project 20: Design Specification/1.0 (Release)

DOCUMENT HISTORY

Version CCF No. Date Changes made to document Changed by
0.1 N/A 27/03/2020 Created document based on CP’s template. OP
0.2 N/A 30/03/2020 Corrected spelling mistakes and formatting. BC, KB,

LW, OP, TP
1.0 N/A 30/03/2020 Corrected grammatical issues, and font sizes. OP

Aberystwyth University / Computer Science Page 19 of 19

	1. Introduction
	1.1 Purpose of this Document
	1.2 Scope
	1.3 Objectives

	2. DECOMPOSITION DESCRIPTION
	2.1 Programs in System
	2.2 Significant Classes
	2.2.1 JSON Package
	2.2.2 JavaFX Package
	2.2.3 Self-Assessment Package
	2.2.4 Test Package

	2.3 Table Mapping Requirements to Classes

	3. DEPENDENCY DESCRIPTION
	3.1 Component Diagram

	4. INTERFACE DESCRIPTION
	4.1 JSON Package
	4.1.1 JSONProcessor
	4.1.2 WelshDictionary implements Comparable<WelshDictionary>

	4.2 Self-Assessment Package
	4.2.1 Question
	4.2.2 AssessmentGenerator extends Question
	4.2.3 WordEnterQuestion extends Question
	4.2.4 WordMatchQuestion extends Question
	4.2.5 SixMeaningQuestion extends Question

	4.3 JavaFX package
	4.3.1 Application
	4.3.2 SharedCodeController
	4.3.3 ScreenSwitch extends SharedCodeController

	4.4 Test Package
	4.4.1 JSONTest
	4.4.2 JavaFXTest
	4.4.3 SelfAssessmentTest

	5. DETAILED DESIGN
	5.1 Sequence Diagrams
	5.1.1 Use Case 1 View dictionary
	5.1.2 Use Case 2 Search for a word
	5.1.3 Use Case 3 View practice list
	5.1.4 Use Case 4 Modify the practice list
	5.1.5 Use Case 5.1 Start ‘Match The Meaning’ test
	5.1.6 Use Case 5.2 Start ‘6 Meanings’ test
	5.1.7 Use Case 5.3 Start ‘Translation’ test
	5.1.8 Use Case 6 View flashcards
	5.1.9 Use Case 7 Add a new word
	5.1.10 Use Case 8 Change word ordering

	5.2 Significant Algorithms
	5.2.1 JavaFX screen switching algorithm
	5.2.2 Live-searching algorithm
	5.2.3 Adding words algorithm
	5.2.4 Saving algorithm
	5.2.5 Loading algorithm

	5.3 Significant Data Structures
	5.3.1 Linked Lists:

