

Software Engineering Group Project 20
Design Specification

Author: Henry Dugmore [hjd3],
Kain Bryan-Jones [kab74],
Luke Wybar [law39],
Marcin Jakob [maj83],
Oscar Pocock [osp1],
Tom Perry [top19],
Waylen Watts [ncw]

Config Ref: DesignSpecGroup20
Date: 5th May 2020
Version: 1.7
Status: Release

Aberystwyth University / Computer Science Page 1 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

CONTENTS

1. INTRODUCTION 3

1.1. Purpose of this Document 3
1.2. Scope 3
1.3. Objectives 3

2. DECOMPOSITION DESCRIPTION 4
2.1. Programs in System 4
2.2. Significant Classes 4

2.2.1. json Package 4
2.2.2. javafx Package 4
2.2.3. selfassessment Package 4
2.2.4. test Package 5

2.3. Table Mapping Requirements to Classes 5
3. DEPENDENCY DESCRIPTION 6

3.1. Component Diagram 6
4. INTERFACE DESCRIPTION 7

4.1. json Package 7
4.1.1. JSONProcessing 7
4.1.2. DictionaryEntry 7

4.2. selfassessment Package 7
4.2.1. Question 7
4.2.2. AssessmentGenerator extends Question 8
4.2.3. TranslateQuestion extends Question 8
4.2.4. MatchTheMeaningQuestion extends Question 8
4.2.5. SixMeaningQuestion extends Question 8

4.3. javafx package 9
4.3.1. AddWordController extends SharedCodeController 9
4.3.2. DictionaryController extends SharedCodeController 9
4.3.3. FlashcardController extends SharedCodeController 9
4.3.4. MatchTheMeaningController extends SharedCodeController 9
4.3.5. PracticeListController extends SharedCodeController 10
4.3.6. SixMeaningsController 10
4.3.7. TranslationController 10
4.3.8. Application 10
4.3.9. SharedCodeController 10

4.3.10. ScreenSwitch extends SharedCodeController 11
4.4. test Package 12

4.4.1. DictionaryEntryTest 12
4.4.2. AssessmentGeneratorTest 12
4.4.3. QuestionTest 12
4.4.4. JSONTest 12

5. DETAILED DESIGN 13
5.1. Sequence Diagrams 13

5.1.1. Use Case 1 View dictionary 13
5.1.2. Use Case 2 Search for a word 14
5.1.3. Use Case 3 View practice list 16
5.1.4. Use Case 4 Modify the practice list 17
5.1.5. Use Case 5.1 Start ‘Match The Meaning’ test 18
5.1.6. Use Case 5.2 Start ‘6 Meanings’ test 19
5.1.7. Use Case 5.3 Start ‘Translation’ test 20
5.1.8. Use Case 6 View flashcards 21
5.1.9. Use Case 7 Add a new word 22

5.1.10. Use Case 8 Change word ordering 23

Aberystwyth University / Computer Science Page 2 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.2. Significant Algorithms 23
5.2.1. JavaFX screen switching algorithm 23
5.2.2. Live-searching algorithm 23
5.2.3. Adding words algorithm 23
5.2.4. Saving algorithm 24
5.2.5. Loading algorithm 24

5.3. Significant Data Structures 24
5.3.1. Linked Lists 24

REFERENCES 25

DOCUMENT HISTORY 26

1. INTRODUCTION

1.1 Purpose of this Document

The purpose of this document is to describe the design of the Welsh Vocabulary Tutor program which adheres
to the Design Specification Standard Document [2] and General Documentation Standards [1] supplied by the
client.

1.2 Scope

This document covers a description of how the Welsh Vocabulary Tutor is designed, including how the software
will be broken down. This document should be read by all project members. It is assumed that the reader is
already familiar with the Welsh Vocabulary Tutor Requirements Specification [3] and the Design Specification
Standards [2].

1.3 Objectives

The objectives of this document are to:

● identify significant classes.

● link functional requirements to classes.

● identify and describe dependencies between modules.

● determine the public methods of said classes.

● describe how the classes interact with each other for major operations.

● identify significant algorithms.

● identify significant data structures.

2. DECOMPOSITION DESCRIPTION

2.1 Programs in System

Our system is made up of a singular program. This program provides all the functionality required as specified
in the Requirements Specification for Welsh Vocabulary Tutor [3] document, including, but not limited to,
importing words, adding words manually, practicing words and monitoring achievement through testing the
user’s word knowledge. The program will also implement all functionality required to pass the functionality
tests defined in the Test Specification [4] document.

Aberystwyth University / Computer Science Page 3 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

Our program structure will consist of four key packages including:

● json – Package that is responsible for handling JSON including the reading/writing of definitions to
and from dictionary.json.

● javafx – Package that contains the JavaFX classes that are all responsible for displaying the UI to the
user.

● selfassessment – Package for holding the classes responsible for generating the user's self assessment
questions.

● test – Package responsible for holding all the JUnit tests that ensure the program works properly.

2.2 Significant Classes

2.2.1 json Package

● JSONProcessor – Contains functions responsible for saving and loading to and from the JSON file
which will be provided by the user, using the Jackson JSON library.

● DictionaryEntry – Class containing all the fields needed for storing dictionary definitions including
Welsh and English translations along with its word type and whether it’s a practice word or not.

2.2.2 javafx Package

● Application – Programs main class that contains a list of the loaded dictionary definitions and is
responsible for running the application. It also contains a list of practice words.

● SharedCodeController – Abstract class that contains all the shared FXML elements between the
different controller classes including the sliding menu, to reduce code duplication. This will be
extended by all the controller classes.

● ScreenSwitch – Class that contains all the scenes for the JavaFX user interface and will be responsible
for initiating the transition to new ones.

2.2.3 selfassessment Package

● Question – Abstract class which contains basic information shared between all the types of test
questions including the questions’ check for correct answers method and a local count for the number
of correct and incorrect answers for a single question. All question classes will extend this class.

● MatchTheMeaningQuestion – Class that contains all the details needed for the ‘Match the Meanings’
question type, including the 4 different practice definitions. This class will be used by the
AssessmentGenerator and extends the Question class.

● TranslationQuestion - Class that contains all the details needed for the ‘Translation’ question type,
including the practice definition that is being tested. This class will be used by the
AssessmentGenerator and extends the Question class.

● SixMeaningsQuestion – Class that contains all the details needed for the ‘Six Meanings’ question
type, including the correct answer along with the five other possible answers. This class will be used by
the AssessmentGenerator and extends the Question class.

● AssessmentGenerator – Class that contains methods to create a randomised list of questions that will
contain a random distribution of question types. It will also track the users correct and total answers
attempted for the whole assessment of multiple questions.

2.2.4 test Package

● AssessmentGeneratorTest – This class will test that the lists pulled in the selfAssessment package are
indeed random, while also pulling the matching data from the dictionary.

● DictionaryEntryTest - This class will perform a number of tests to ensure the DictionaryEntry
datatype can reliably and accurately represent dictionary entries.

Aberystwyth University / Computer Science Page 4 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

● JSONTest – Class that contains methods which will be used to test that the JSON package classes are
correctly loading and saving to and from the JSON file.

● QuestionTest - Class that tests the different types of questions available to ensure the user is accurately
marked for their work.

2.3 Table Mapping Requirements to Classes

Functional Requirement Classes implementing
FR1 Startup Application,

ScreenSwitch,
SharedCodeController,
JSONProcessor,
DictionaryEntry,
DictionaryController

FR2 Ordering of the list DictionaryController,
DictionaryEntry,
PracticeListController,
SharedCodeController,
Application

FR3 Searching of list DictionaryController,
DictionaryEntry,
PracticeListController,
Application,
SharedCodeController

FR4 Maintaining a practice list DictionaryController,
PracticeListController,
SharedCodeController,
DictionaryEntry,
Application,
AddWordController

FR5 Adding new words to the dictionary Application,
AddWordController,
DictionaryEntry,
SharedCodeController

FR6 Display of words DictionaryController,
PracticeListController,
SharedCodeController,
DictionaryEntry,
Application

FR7 Reviewing the practice list PracticeListController,
SharedCodeController,
DictionaryEntry,
Application

FR8 Flashcards Application,
FlashcardController,
SharedCodeController,
DictionaryEntry

FR9 Tests on practice words AssessmentGenerator,
Question,
TranslationController,
SixMeaningsController,
MatchTheMeaningController,
SharedCodeController,
TranslationQuestion,
SixMeaningsQuestion,
MatchTheMeaningQuestion

FR10 Running tests Application,

Aberystwyth University / Computer Science Page 5 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

SixMeaningsController,
TranslationController,
MatchTheMeaningController
AssessmentGenerator

3. DEPENDENCY DESCRIPTION

3.1 Component Diagram

Figure 1: Component diagram of the Welsh Vocabulary App

4. INTERFACE DESCRIPTION

4.1 json Package

4.1.1 JSONProcessing

A class that handles the import and export of Json-formatted files, following the schema set out in SE.QA.CSRS
DC3

● public LinkedList< DictionaryEntry > readInJason(File file) – Method to read in a Json file
formatted in the schema set out in SE.QA.CSRS DC3

● public void writeOutJSON(File dictionaryFile, LinkedList< DictionaryEntry > words) - Method to
write out a Json file formatted in the schema set out in SE.QA.CSRS DC3

Aberystwyth University / Computer Science Page 6 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

4.1.2 DictionaryEntry

Class that will hold each word’s definition with all the necessary fields.
● public DictionaryEntry() - Default constructor for DictionaryEntry.

● public DictionaryEntry(String english, String welsh, WordType wordType, Boolean
practiceWord) - Constructor for DictionaryEntry that includes a full list of parameters.

● public String getWelsh() - Getter method for the dictionary objects welsh variable.

● public String getEnglish() - Getter method for the dictionary objects english variable.

● public String getWordType() - Getter method for the dictionary objects word type variable.

● public boolean isPracticeWord() - Getter method for the dictionary objects practiceWord variable.

● public void setWelsh(String welsh) - Setter method for the dictionary objects welsh variable.

● public void setEnglish(String english) - Setter method for the dictionary objects english variable.

● public void setWordType(String wordType) - Setter method for the dictionary objects word type
variable.

● public void setPracticeWord(boolean practiceWord) - Setter method for the dictionary objects
practiceWord variable.

● @Override public boolean equals(Object obj) - Equals method for checking if two dictionary objects
are equal.

4.2 selfassessment Package

4.2.1 Question

Abstract class that holds general information such as each questions possible answers and also the correct
answer.

● public boolean checkAnswer(String answer) - Method to check whether a given answer matches the
question’s correct answer.

● public LinkedList<DictionaryEntry> getPossibleAnswers() - Getter method for the question objects
possible answers.

● public static void CheckAnswer(ArrayList<DictionaryEntry> listOfCorrectQuestions,
ArrayList<String> listOfAnswers, boolean isEnglish) - Function that checks the answers of
questions. Checks whether they're right and uses an object instance of StringBuilder to build an
appropriate sentence to present to the user to give them their feedback. E.g. "Apple is the English for
Afal is correct"

● public void showFeedback() - Function for giving users positive or negative feedback for when they
answer a question during an assessment.

● public static void resetScore() - Resets the score to 0 for the next test.

4.2.2 AssessmentGenerator extends Question

Class that contains methods to create a randomised list of Assessment that will contain a random distribution of
question types.

● public static LinkedList<Question> generateAssessment(LinkedList<DictionaryEntry>
dictionary) - Method that will generate a randomized list of questions consisting of random
distribution of questions types, using the dictionary’s practice words as the parameter.

Aberystwyth University / Computer Science Page 7 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

● public Question generateSixMeanings(LinkedList<DictionaryEntry> dictionary) - Method that
will generate a list of questions that are the type ‘6 Meanings’, using the dictionary's practice words as
the parameter.

● public static Question generateMatchMeaning(LinkedList<DictionaryEntry> practiceList) –
Method that will generate a list of questions that are of the type ‘Match The Meanings’ using the
dictionary’s practice words as the parameter.

● public static Question generateTranslationTest(LinkedList<DictionaryEntry> practiceList) –
Method that will generate a list of questions that are the type ‘Translation’, using the dictionary’s
practice words as the parameter.

● public static void gotToNextQuestion() - Method usescurrentAssessment as pointer to go to next
question in assessment list.

● public static void reset() - Method for resetting assessment to default stage.

4.2.3 TranslateQuestion extends Question

● public TranslateQuestion (DictionaryEntry correctAnswer) - Constructor for TranslateQuestion
that takes a DictionaryEntry object that is being tested on as the parameter.

4.2.4 MatchTheMeaningQuestion extends Question

● public MatchTheMeaningQuestion (DictionaryEntry[] correctAnswers) - Constructor for
MatchTheMeaningQuestion that takes four DictionaryEntry objects that are being tested on as the
parameters.

4.2.5 SixMeaningQuestion extends Question

● public SixMeaningQuestion (DictionaryEntry correctAnswer, LinkedList<DictionaryEntry>
dictionary) - Constructor for SixMeaningQuestion that takes one DictionaryEntry object that is being
tested along with the full list of words which will be used to generate randomized possible answers as
the parameters.

● public ArrayList<DictionaryEntry> getCorrectAnswer() - Function to retrieve the correct answer to
a SixMeaningsQuestion.

4.3 javafx package

4.3.1 AddWordController extends SharedCodeController

A class that handles the keyboard and mouse input and interaction for the 'Add Word Page' which is defined by
'addword.fxml'.

● public void addCharXX(ActionEvent actionEvent) - Method that adds whatever value XX will
be(e.g. “ch”, “th”, “ph”) to the welsh text field and runs when the user clicks the XX button on the add
word screen.

● public void specialCharX(ActionEvent actionEvent) – There are four different ‘specialChar’
methods which append the values of specialChar ‘1-4’ to the welsh word.

4.3.2 DictionaryController extends SharedCodeController

A class that handles the keyboard and mouse input and interaction for the 'Dictionary Page' which is defined by
'dictionary.fxml'.

● public void initialize() - Initializes the table of dictionary entries. An observable list of
DictionaryEntries is loaded from the Application class into a local instance of ObservableList. It also
sets up Lambda expressions related to live searching functionality and the display of DictionaryEntries.

Aberystwyth University / Computer Science Page 8 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

● private void switchLangSort() - Method to switch the language used to sort the dictionary list. If
currently sorted by English, this will change the sort to by Welsh. If currently sorted by Welsh, this will
change the sort to by English.

● private void switchAlphaSort() - Method to switch the alphabetical order used to sort the dictionary
list.

4.3.3 FlashcardController extends SharedCodeController

A class that serves as the controller for the programs Flashcard JavaFX scene, handling all of its events and
attributes. This scene is defined as "flashcard.fxml".

● private void initialize() - Method that initializes ‘flashcard.fxml’ by setting up the icons and text. This
method is called automatically whenever the flashcard scene starts.

● private void handleFlashcardClick() - Event that rotates the scenes flashcard using RotateTransition
whenever the user clicks the flashcard.

● private void handlePreviousCard() - Event that switches to the previous flashcard whenever the user
clicks the ‘leftArrow’ icon.

● private void handleNextCard() - Event that switches to the next flashcard whenever the user clicks
the ‘right-arrow’ icon.

● private void updateCounter() - Method that updates the onscreen counter of the current flashcard.
● private RotateTransition RotateCard(Node card) - Method that creates a RotateTransition for

flipping the card 180 degrees.

4.3.4 MatchTheMeaningController extends SharedCodeController

A class that generates questions and checks for answers to match the meaning test.
● public void setWords(ArrayList<DictionaryEntry> questions, ArrayList<Integer> orderList) –

Sets chosen words from the dictionary on the scene.
● public void checkAnswers() - Checks if answers from users are correct.
● private void initialize() - see 4.3.2

4.3.5 PracticeListController extends SharedCodeController

A class that handles the keyboard and mouse input and interaction for the 'Dictionary Page' which is defined by
'dictionary.fxml'.

● public void initialize() - see 4.3..2.
● private void switchLangSort() - Method to switch the language used to sort the dictionary list.
● private void switchAlphaSort() - Method to switch the alphabetical order used to sort the dictionary

list.

4.3.6 SixMeaningsController

● public void setWords(ArrayList<DictionaryEntry> questions, ArrayList<Integer> orderList) -
Method that sets up the SIxMeanings question onto the screen. It firstly starts by checking the type of
question and displaying the possible answer based off of this.

● public void checkAnswers() - Method checks the answer the user has submitted against the questions
correct answer. This works by passing in the users ‘WordCounterPart’ answer with the correct answer
into the Question class which does the checking before moving onto the next question.

● private void initialize() - see 4.3.2
● public void answerX() - Event that runs when the user clicks the Xth answer from the six options.

This sets the ‘wordCounterPart’ to the value in ‘possibleAnswerX’before checking the answer.

4.3.7 TranslationController

● public void specialCharX(ActionEvent actionEvent) – see 4.3.1.
● private void initialize() - see 4.3.2

Aberystwyth University / Computer Science Page 9 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

● void translateWord() - Takes the word the user inputs and compares it to the correct answer using the
checkAnswer function in the QuestionClass.

4.3.8 Application

Programs main class where the program will start from. This class will also hold the program's dictionary
definitions.

● Main() – runs app.

4.3.9 SharedCodeController

Abstract class that will hold all of the repeated information between controllers including common FXML
elements that will be derived by the controllers. This could include the sliding menu options and user test scores.

● public void setup() - Method that sets up the program’s menu in each of the controllers initialising
the icons and text.

● private void initializeIcons() - Method that sets up all of the menu icons by setting them to the
images stored within the resources file.

● private void initializeMenuText() - Method that sets up all of the menu’s text by setting them to
their desired text when the menu is expanded.

● private void disableMenuText() - Method that disables the menu’s text when the menu is collapsed
by setting their text to nothing.

● private void expandMenuClick() - Event that collapses or expands or expands the menu whenever
the ‘expandMenuicon’ is clicked by the user. The method determines the menu current state by
looking at the value of ‘sideBarWidth’ and uses that to decide whether the menu needs to expand to
230 and initialise the menu text or collapse to 50, disabling menu text.

● private void dictionaryIconClick() - Event to switch scenes to ‘dictionary.fxml’ when the menu’s
‘dictionaryIcon’ icon is clicked.

● private void practiceListIconClick() - Event to switch scenes to ‘practicelist.fxml’ when the menu’s
‘practiceListIcon’ is clicked.

● private void flashcardIconClick() - Event to switch scenes to ‘flashcard.fxml’ when the menu’s
‘practiceListIcon’ icon is clicked. This method checks to see if practiceList is empty before switching
in order to avoid a NullPointerException in the flashcard scene.

● private void studyIconClick() - Event to generate an assessment using AssessmentGenerator when
the menu’s ‘studyIcon’ icon is clicked.

● private void addWordIconClick() - Event to switch scenes to ‘addword.fxml’ when the menu’s
‘addWordIcon’ icon is clicked.

4.3.10 ScreenSwitch extends SharedCodeController

● SceneType - SceneType is an enumeration type for storing the different types of scenes. The different
possible values are ‘addWordScene’, ‘dictionaryScene’, ‘flashcardScene’, ‘praciceListScene’,
‘matchMeaningScene’, ‘sixMeaningsScene’, ‘translationScene’.

● public ScreenSwitch(Stage stage) - This constructor is used by Application to pass control to the
stage. It will also display the launch scene on the stage to the user. Change the Scene loaded here to
change the launch screen.

● public static void swap(SceneType newScene) – Method that is responsible for switching between
JavaFX, with it taking the new scene’s name as an enum as a parameter.

Aberystwyth University / Computer Science Page 10 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

4.4 test Package

4.4.1 DictionaryEntryTest

A test class that contains methods testing that DictionaryEntry works as intended.
● void testPracticeWordFalse() - Tests whether the default constructor sets isPracticeWord to false

upon declaration of a new DictionaryEntry.
● void testAllSettersAndGetters() - Tests whether the setters and getters of the DictionaryEntry class

work as intended.
● void testEqualsTruePossitive() - A true-positive test for the equals method in DictionaryEntry.
● void testEqualsTrueNegative() - A true-negative test for the equals method in DictionaryEntry.

4.4.2 AssessmentGeneratorTest

A test class for various tests regarding AssessmentGenerator.

● public void testNumOfAssessment() - JUnit test to see if the right amount of tests is generated.

4.4.3 QuestionTest

● void testCheckRightAnswerTranslationOrSixMeanings() - JUnit tests that the correctAnswers
variable increments when a user gets a right answer when doing either a Translation or SixMeanings
test.

● void testCheckWrongAnswerTranslationOrSixMeanings() - JUnit Tests that the wrongAnswers
variable increments when a user gets a wrong answer when doing either a Translation or SixMeanings
test.

● void testCheckRightAnswerMatchMeaning() - Tests that the correctAnswers variable increments
when a user gets a right answer when doing either a MatchTheMeaning test.

● void testCheckWrongAnswerMatchMeaning() - Tests that the wrongAnswers variable increments
when a user gets a wrong answer when doing either a MatchTheMeaning test.

● void resetScore() – JUnit test to check whether the Question class method ‘resetScore’ works as
intended.

4.4.4 JSONTest

Class that contains methods which will be used to test that the JSON package classes are correctly loading and
saving to and from the JSON file.

● @BeforeAll public static void setupTest() - Setup method that is run before all of the tests, setting up
a test list of DictionaryEntry that is saved to a JSON test file.

● static void deleteFile() -Method that is run after the JUnit tests have finished to remove the JSON test
file from the program.

● void testLoad() - JUnit test to check that the JSON file has been correctly loaded. This works by
loading the test file and check

● public void testSave() - JUnit test to check that changes to the list of definitions are updated and
saved to the JSON file accordingly. This is done by adding a new item to the JSON test list and saving
it to the file before reloading it to check if the loaded list matches the updated test list.

Aberystwyth University / Computer Science Page 11 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5. DETAILED DESIGN

5.1 Sequence Diagrams

5.1.1 Use Case 1 View dictionary

Figure 2: Sequence diagram for displaying the Dictionary

Aberystwyth University / Computer Science Page 12 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.2 Use Case 2 Search for a word

Figure 3: Sequence diagram for performing word search on the ‘Dictionary’ page

Aberystwyth University / Computer Science Page 13 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

Figure 4: Sequence diagram for performing word search on the ‘Practice List’ page

Aberystwyth University / Computer Science Page 14 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.3 Use Case 3 View practice list

Figure 5: Sequence diagram for displaying the practice list

Aberystwyth University / Computer Science Page 15 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.4 Use Case 4 Modify the practice list

Figure 6: Sequence diagram for removing words from the practice list

Aberystwyth University / Computer Science Page 16 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.5 Use Case 5.1 Start ‘Match The Meaning’ test

Figure 7: Sequence diagram for the ’Match The Meaning’ test

Aberystwyth University / Computer Science Page 17 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.6 Use Case 5.2 Start ‘6 Meanings’ test

Figure 8: Sequence diagram for the ’6 Meanings’ test

Aberystwyth University / Computer Science Page 18 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.7 Use Case 5.3 Start ‘Translation’ test

Figure 9: Sequence diagram for the ’Translation’ test

Aberystwyth University / Computer Science Page 19 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.8 Use Case 6 View flashcards

Figure 10: Sequence diagram for loading the dictionary list

Aberystwyth University / Computer Science Page 20 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.9 Use Case 7 Add a new word

Figure 11: Sequence diagram for adding new words

Aberystwyth University / Computer Science Page 21 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

5.1.10 Use Case 8 Change word ordering

Figure 12: Sequence diagram for changing the ordering of words

5.2 Significant Algorithms

5.2.1 JavaFX screen switching algorithm

All JavaFX screens will be loaded in at runtime and switching will be achieved by calling a method in the
ScreenSwitch class which takes the name of the requested screen as an enumeration and handles preparing the
screen and finally puts it on the stage.

5.2.2 Live-searching algorithm

The live search algorithm uses a lambda expression with a listener to update the filter on a filtered list everytime
the textbox which the user types their query into updates. This allows the system to search and filter the list as
the user is typing in realtime.

5.2.3 Adding words algorithm

Each new word added will create a new DictionaryEntry object, constructed using the Welsh, English and word
type to populate the instance variables. The new object is checked to see if it is already in the program’s
‘dictionary’ in the Application class. If the new definition doesn't already exist, it is then added to the

Aberystwyth University / Computer Science Page 22 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

‘dictionary’ and ‘practice List’ lists in Application, which will be used by other modules of the program for
displaying, practicing and testing words with the user.

5.2.4 Saving algorithm

The saving shall be performed at the closure of the program, this will be completed through the use of the
Jackson library, this provides a simple way of encoding the data in the program into JSON. This is then written
out to a flat file.

5.2.5 Loading algorithm

The loading algorithm will run on system start, in the Main method of Application. It will use JavaFX to open a
fileChooser, and when the user picks a file with valid JSON, this will be loaded in and mapped to
DictionaryEntry objects by the Jackson library, these objects are then added to Application’s ‘dictionary’ list
with any practice words also being added to the ‘practiceList’ list in Application.

5.3 Significant Data Structures

5.3.1 Linked Lists

Currently the program works with DictionaryEntry objects, which store the Welsh translation of the word, its
English translation and the word type (verb, masculine noun, etc). These objects are linked lists which would
point to the next object in the dictionary, i.e. it would have the next word down adjacent to the object.

Aberystwyth University / Computer Science Page 23 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

 REFERENCES

[1] Software Engineering Group Projects: General Documentation Standards. C. J. Price, N. W. Hardy, B.P.
Tiddeman. SE.QA.03. 1.8 Release

[2]Software Engineering Group Projects: Design Specification Standards. C. J. Price, SE.QA.05. 2.1 Release
[3]Software Engineering Group Projects: Welsh Vocabulary Tutor Requirement Specifications. C. J. Price,

SE.QA.CSRS. 1.1 Release
[4]Software Engineering Group Project 20: Test Specification. N. C. Watts, H. J. Dugmore, TestSpecGroup20.

1.4 Release

Aberystwyth University / Computer Science Page 24 of 25

Software Engineering Group Project: Design Specification/1.7 (Release)

DOCUMENT HISTORY

Version CCF No. Date Changes made to document Changed by
0.1 N/A 27/03/2020 Created document based on CP’s template. OP
0.2 N/A 30/03/2020 Corrected spelling mistakes and formatting. BC, KB, LW,

OP, TP
1.0 N/A 31/03/2020 Corrected grammatical issues, and font sizes. OP
1.5 12 29/04/2020 Refactor of WelshDictionary ->

DictionaryEntry.
NCW

1.6 58 04/05/2020 Made changes to bring compliance with
Standard Specifications and Issue Ticket

LW, TP, KB

1.7 58 05/05/2020 Made minor changes to correct missed issues
as stated in issue #58

LW, TP, KB

Aberystwyth University / Computer Science Page 25 of 25

